ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of 17 new sharp-lined Ap stars with magnetically resolved lines

44   0   0.0 ( 0 )
 نشر من قبل Lars Freyhammer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chemically peculiar A stars (Ap) are extreme examples of the interaction of atomic element diffusion processes with magnetic fields in stellar atmospheres. The rapidly oscillating Ap stars provide a means for studying these processes in 3D and are at the same time important for studying the pulsation excitation mechanism in A stars. As part of the first comprehensive, uniform, high resolution spectroscopic survey of Ap stars, which we are conducting in the southern hemisphere with the Michigan Spectral Catalogues as the basis of target selection, we report here the discovery of 17 new magnetic Ap stars having spectroscopically resolved Zeeman components from which we derive magnetic field moduli in the range 3 - 30 kG. Among these are 1) the current second-strongest known magnetic A star, 2) a double-lined Ap binary with a magnetic component and 3) an A star with particularly peculiar and variable abundances. Polarimetry of these stars is needed to constrain their field geometries and to determine their rotation periods. We have also obtained an additional measurement of the magnetic field of the Ap star HD 92499.

قيم البحث

اقرأ أيضاً

Almost three decades ago, Mathys (1990) demonstrated the importance of studying Ap stars showing resolved Zeeman split Fe II 6147.7 and 6149.2 lines. Such Zeeman split lines can be seen in stars whose projected rotational velocity is sufficiently sma ll and whose magnetic field is strong enough to exceed the rotational Doppler broadening. Observations of resolved Zeeman split lines permit the diagnosis of the average of the modulus of the magnetic field over the visible stellar hemisphere. Although Zeeman splitting is not expected in faster rotating hot massive stars, we have recently been discovering early B-type stars displaying magnetically split spectral lines.
We report the detection of short period variations in the stars HD69013 and HD96237. These stars possess large overabundances of rare earth elements and global magnetic fields, thus belong to the class of chemically peculiar Ap stars of the main sequ ence. Pulsations were found from analysis of high time resolution spectra obtained with the ESO Very Large Telescope using a cross correlation method for wide spectral bands, from lines belonging to rare earth elements and from the H alpha core. Pulsation amplitudes reach more than 200 m/s for some lines in HD69013 with a period of 11.4 min and about 100m/s in HD96237 with periods near 13.6 min. The pulsations have also been detected in photometric observations obtained at the South African Astronomical Observatory.
We report the discovery of eleven new ZZ Cetis using telescopes at OPD (Observatorio do Pico dos Dias/LNA) in Brazil, the 4.1 m SOAR (Southern Astrophysical Research) telescope at Cerro Pachon, Chile, and the 2.1 m Otto Struve telescope at McDonald o bservatory. The candidates were selected from the SDSS (Sloan Digital Sky Survey) and SPY (ESO SN Ia progenitor survey), based on their Teff obtained from optical spectra fitting. This selection criterion yields the highest success rate of detecting new ZZ Cetis, above 90% in the Teff range from 12000 to 11000 K. We also report on a DA not observed to vary, with a Teff placing the star close to the blue edge of the instability strip. Among our new pulsators, one is a little bit cooler than this star for which pulsations were not detected. Our observations are an important constraint on the location of the blue edge of the ZZ Ceti instability strip.
We present an analysis of high time resolution spectra of the chemically peculiar Ap star HD 213637. The star shows rapid radial velocity variations with a period close to the photometric pulsation period. Radial velocity pulsation amplitudes vary si gnificantly for different rare earth elements. The highest pulsation amplitudes belong to lines of TbIII ~360 m/s, PrII ~250 m/s and PrIII ~230 m/s . We did not detect any pulsations from spectral lines of EuII and in Halpha, in contrast to many other roAp stars. We also did not find radial velocity pulsations using spectral lines of other chemical elements, including Mg, Si, Ca, Sc, Cr, Fe, Ni, Y and Ba. There are phase shifts between the maxima of pulsation amplitudes of different rare earth elements and ions, which is evidence of an outwardly running magneto-acoustic wave propagating through the upper stellar atmosphere.
Chandra observations of the low-energy peaked BL Lac object AP Librae revealed the clear discovery of a non-thermal X-ray jet. AP Lib is the first low energy peaked BL Lac object with an extended non-thermal X-ray jet that shows emission into the VHE range. The X-ray jet has an extension of ~15 (~ 14 kpc). The X-ray jet morphology is similar to the radio jet observed with VLA at 1.36 GHz emerging in south-east direction and bends by 50 degrees at a distance of 12 towards north-east. The intensity profiles of the X-ray emission are studied consistent with those found in the radio range. The spectral analysis reveals that the X-ray spectra of the core and jet region are both inverse Compton dominated. This adds to a still small sample of BL Lac objects whose X-ray jets are IC dominated and thus more similar to the high luminosity FRII sources than to the low luminosity FRI objects, which are usually considered to be the parent population of the BL Lac objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا