ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - D. Jung , L. Yin , B. J. Albright 2014
Laser-driven ions have compelling properties and their potential use for medical applications has attracted a huge global interest. One of the major challenges of these applications is generating beams of the required energies. To date, there has bee n no systematic study of the effect of laser intensity on the generation of laser-driven ions from ultrathin foils during relativistic transparency. Here we present a scaling for ion energies with respect to the on-target laser intensity and in considering target thickness we find an optimum thickness closely related to the experimentally observed relativistic transparency. A steep linear scaling with the normalized laser amplitude a0 has been measured and verified with PIC simulations. In contrast to TNSA, this scaling is much steeper and has been measured for ions with Z > 1. Following our results, ion energies exceeding 100MeV/amu are already accessible with currently available laser systems enabling realization of numerous advanced applications
Stimulated Raman scattering (SRS) in its strongly nonlinear, kinetic regime is controlled by a technique of deterministic, strong temporal modulation and spatial scrambling of laser speckle patterns, called Spike Trains of Uneven Duration and Delay ( STUD pulses) [B. Afeyan and S. Huller, Phys. Rev. Lett. (submitted)]. Kinetic simulations show that use of STUD pulses may decrease SRS reflectivity by more than an order of magnitude over random-phase-plate (RPP) or induced-spatial-incoherence (ISI) beams of the same average intensity and comparable bandwidth.
79 - S. S. Kim , C. Huan , L. Yin 2013
The lattice dynamics of solid 4He has been explored using pulsed NMR methods to study the motion of 3He impurities in the temperature range where experiments have revealed anomalies attributed to superflow or unexpected viscoelastic properties of the solid 4He lattice. We report the results of measurements of the nuclear spin-lattice and spin-spin relaxation times that measure the fluctuation spectrum at high and low frequencies, respectively, of the 3He motion that results from quantum tunneling in the 4He matrix. The measurements were made for 3He concentrations 16<x_3<2000 ppm. For 3He concentrations x_3 = 16 ppm and 24 ppm, large changes are observed for both the spin-lattice relaxation time T_1 and the spin-spin relaxation time T_2 at temperatures close to those for which the anomalies are observed in measurements of torsional oscillator responses and the shear modulus. These changes in the NMR relaxation rates were not observed for higher 3He concentrations.
133 - L. Yin , J. S. Xia , Y. Takano 2012
By means of ac magnetic-susceptibility measurements, we find evidence for a new magnetic phase of Tb$_2$Ti$_2$O$_7$ below about 140 mK in zero magnetic field. In magnetic fields parallel to [111], this phase---exhibiting frequency- and amplitude-depe ndent susceptibility and an extremely slow spin dynamics---extends to about 70 mT, at which it gives way to another phase. The field dependence of the susceptibility of this second phase, which extends to about 0.6 T, indicates the presence of a weak magnetization plateau below 50 mK, as has been predicted by a single-tetrahedron four-spin model, giving support to the underlying proposal that the disordered low-field ground state of Tb$_2$Ti$_2$O$_7$ is a quantum spin ice.
107 - S. S. Kim , C. Huan , L. Yin 2012
We report measurements of the nuclear spin-lattice and spin-spin relaxation times of very dilute 3He in solid 4He in the temperature range 0.01 leq T leq 0.5 K for densities where anomalies have been observed in torsional oscillator and shear modulus measurements. We compare the results with the values of the relaxation times reported by other observers for higher concentrations and the theory of Landesman that takes into account the elastic properties of the 4He lattice. A sharp increase in the magnitude of the nuclear spin-lattice relaxation times compared to the the classical Landesman theory is observed close to the temperatures where the torsional and shear modulus anomalies are observed. The NMR results suggest that the tunneling of 3He impurities in the atomic-scale elastic distortion is affected by the same processes that give rise to the macroscopic elastic dissipation anomalies.
195 - S. S. Kim , C. Huan , L. Yin 2010
The dynamics of 3He atoms in solid 4He have been investigated by measuring the NMR relaxation times T1, T2 in the region where a significant non-classical rotational inertia fraction (NCRIF) has been reported. For 3He concentrations x3 = 16 ppm and 2 4 ppm, changes are observed for both the spin-lattice relaxation time T1 and the spin-spin relaxation time T2 at the temperatures corresponding to the onset of NCRIF and, at lower temperatures, to the 3He-4He phase separation. The magnitudes of T1 and T2 at temperatures above the phase separation agree roughly with existing theory based on the tunneling of 3He impurities in the elastic strain field due to isotopic mismatch. However, a distinct peak in T1 and a less well-resolved feature in T2 are observed near the reported NCRIF onset temperature, in contrast to the temperature-independent relaxation times predicted by the tunneling theory.
77 - L. He , X. Hu , L. Yin 2008
We find universal scaling relations of the pinning effect on the Hall resistivity $rho_{xy}$ and Hall angle $theta_{H}$. Considering the extended power law form of $rho_{xx}$ and the microscopic analysis of $sigma_{xy}$, we obtain unified $rho_{xy}$ equations for superconductors with and without double sign reversal. These equations reasonably explain the striking universality in doping dependence found by Nagoaka et al., which contradicts the prediction of the time dependent Ginzburg-Landau equation based on s-wave coupling theory [PRL {bf{80}},3594 (1998)]. A full comparison of experiment with prediction from theoretical models is proposed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا