ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of Stimulated Raman Scattering in the Strongly Nonlinear and Kinetic Regime Using Spike Trains of Uneven Duration and Delay: STUD Pulses

141   0   0.0 ( 0 )
 نشر من قبل Brian Albright
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stimulated Raman scattering (SRS) in its strongly nonlinear, kinetic regime is controlled by a technique of deterministic, strong temporal modulation and spatial scrambling of laser speckle patterns, called Spike Trains of Uneven Duration and Delay (STUD pulses) [B. Afeyan and S. Huller, Phys. Rev. Lett. (submitted)]. Kinetic simulations show that use of STUD pulses may decrease SRS reflectivity by more than an order of magnitude over random-phase-plate (RPP) or induced-spatial-incoherence (ISI) beams of the same average intensity and comparable bandwidth.



قيم البحث

اقرأ أيضاً

Stimulated Raman scattering (SRS) in plasma in a non-eigenmode regime is studied theoretically and numerically. Different from normal SRS with the eigen electrostatic mode excited, the non-eigenmode SRS is developed at plasma density $n_e>0.25n_c$ wh en the laser amplitude is larger than a certain threshold. To satisfy the phase-matching conditions of frequency and wavenumber, the excited electrostatic mode has a constant frequency around half of the incident light frequency $omega_0/2$, which is no longer the eigenmode of electron plasma wave $omega_{pe}$. Both the scattered light and the electrostatic wave are trapped in plasma with their group velocities being zero. Super hot electrons are produced by the non-eigen electrostatic wave. Our theoretical model is validated by particle-in-cell simulations. The SRS driven in this non-eigenmode regime may play a considerable role in the experiments of laser plasma interactions as long as the laser intensity is higher than $10^{15}$W/cm$^2$.
The theory of stimulated Raman adiabatic passage in a three-level Lambda-scheme of the interaction of an atom or molecule with light, which takes the nonadiabatic processes at the beginning and the end of light pulses into account, is developed.
By using the inverse spectral transform, the SRS equations are solved and the explicit output data is given for arbitrary laser pump and Stokes seed profiles injected on a vacuum of optical phonons. For long duration laser pulses, this solution is mo dified such as to take into account the damping rate of the optical phonon wave. This model is used to interprete the experiments of Druhl, Wenzel and Carlsten (Phys. Rev. Lett., (1983) vol. 51, p. 1171), in particular the creation of a spike of (anomalous) pump radiation. The related nonlinear Fourier spectrum does not contain discrete eigenvalue, hence this Raman spike is not a soliton.
Temporal cavity solitons (CS) are optical pulses that can persist in passive resonators, and they play a key role in the generation of coherent microresonator frequency combs. In resonators made of amorphous materials, such as fused silica, they can exhibit a spectral red-shift due to stimulated Raman scattering. Here we show that this Raman-induced self-frequency-shift imposes a fundamental limit on the duration and bandwidth of temporal CSs. Specifically, we theoretically predict that stimulated Raman scattering introduces a previously unidentified Hopf bifurcation that leads to destabilization of CSs at large pump-cavity detunings, limiting the range of detunings over which they can exist. We have confirmed our theoretical predictions by performing extensive experiments in several different synchronously-driven fiber ring resonators, obtaining results in excellent agreement with numerical simulations. Our results could have significant implications for the future design of Kerr frequency comb systems based on amorphous microresonators.
61 - Y. Chen , C. Y. Zheng , Z. J. Liu 2020
The influence of sinusoidal density modulation on the stimulated Raman scattering (SRS) reflectivity in inhomogeneous plasmas is studied by three-wave coupling equations, fully kinetic Vlasov simulations and particle in cell (PIC) simulations. Throug h the numerical solution of three-wave coupling equations, we find that the sinusoidal density modulation is capable of inducing absolute SRS even though the Rosenbluth gain is smaller than {pi}, and we give a region of modulational wavelength and amplitude that the absolute SRS can be induced, which agrees with early studies. The average reflectivity obtained by Vlasov simulations has the same trend with the growth rate of absolute SRS obtained by three-wave equations. Instead of causing absolute instability, modulational wavelength shorter than a basic gain length is able to suppress the inflation of SRS through harmonic waves. And, the PIC simulations qualitatively agree with our Vlasov simulations. Our results offer an alternative explanation of high reflectivity at underdense plasma in experiments, which is due to long-wavelength modulation, and a potential method to suppress SRS by using the short-wavelength modulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا