ترغب بنشر مسار تعليمي؟ اضغط هنا

The physics of activated escape of objects out of a metastable state plays a key role in diverse scientific areas involving chemical kinetics, diffusion and dislocation motion in solids, nucleation, electrical transport, motion of flux lines supercon ductors, charge density waves, and transport processes of macromolecules, to name but a few. The underlying activated processes present the multidimensional extension of the Kramers problem of a single Brownian particle. In comparison to the latter case, however, the dynamics ensuing from the interactions of many coupled units can lead to intriguing novel phenomena that are not present when only a single degree of freedom is involved. In this review we report on a variety of such phenomena that are exhibited by systems consisting of chains of interacting units in the presence of potential barriers. In the first part we consider recent developments in the case of a deterministic dynamics driving cooperative escape processes of coupled nonlinear units out of metastable states. The ability of chains of coupled units to undergo spontaneous conformational transitions can lead to a self-organised escape. The mechanism at work is that the energies of the units become re-arranged, while keeping the total energy conserved, in forming localised energy modes that in turn trigger the cooperative escape. We present scenarios of significantly enhanced noise-free escape rates if compared to the noise-assisted case. The second part deals with the collective directed transport of systems of interacting particles overcoming energetic barriers in periodic potential landscapes. Escape processes in both time-homogeneous and time-dependent driven systems are considered for the emergence of directed motion. It is shown that ballistic channels immersed in the associated high-dimensional phase space are the source for the directed long-range transport.
We consider motion of an underdamped Brownian particle in a washboard potential that is subjected to an unbiased time-periodic external field. While in the limiting deterministic system in dependence of the strength and phase of the external field di rected net motion can exist, for a finite temperature the net motion averages to zero. Strikingly, with the application of an additional time-delayed feedback term directed particle motion can be accomplished persisting up to fairly high levels of the thermal noise. In detail, there exist values of the feedback strength and delay time for which the feedback term performs oscillations that are phase locked to the time-periodic external field. This yields an effective biasing rocking force promoting periods of forward and backward motion of distinct duration, and thus directed motion. In terms of phase space dynamics we demonstrate that with applied feedback desymmetrization of coexisting attractors takes place leaving the ones supporting either positive or negative velocities as the only surviving ones. Moreover, we found parameter ranges for which in the presence of thermal noise the directed transport is enhanced compared to the noise-less case.
We study the collective escape dynamics of a chain of coupled, weakly damped nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath in combination with a weak, globally acting periodic perturbation. Optimal pa rameter choices are identified that lead to a drastic enhancement of escape rates as compared to a pure noise-assisted situation. We elucidate the speed-up of escape in the driven Langevin dynamics by showing that the time-periodic external field in combination with the thermal fluctuations triggers an instability mechanism of the stationary homogeneous lattice state of the system. Perturbations of the latter provided by incoherent thermal fluctuations grow because of a parametric resonance, leading to the formation of spatially localized modes (LMs). Remarkably, the LMs persist in spite of continuously impacting thermal noise. The average escape time assumes a distinct minimum by either tuning the coupling strength and/or the driving frequency. This weak ac-driven assisted escape in turn implies a giant speed of the activation rate of such thermally driven coupled nonlinear oscillator chains.
The nonintegrable Hamiltonian dynamics of particles placed in a symmetric, spatially periodic potential and subjected to a periodically varying field is explored. Such systems can exhibit a rich diversity of unusual transport features. In particular, depending on the setting of the initial phase of the drive, the possibility of a giant transient directed transport in a symmetric, space-periodic potential when driven with an adiabatically varying field arises. Here, we study the escape scenario and corresponding mean escape times of particles from a trapping region with the subsequent generation of a transient directed flow of an ensemble of particles. It is shown that for adiabatically slow inclination modulations the unidirectional flow proceeds over giant distances. The direction of escape and, hence, of the flow is entirely governed whether the periodic force, modulating the inclination of the potential, starts out initially positive or negative. In the phase space, this transient directed flow is associated with a long-lasting motion taking place within ballistic channels contained in the non-uniform chaotic layer. We demonstrate that for adiabatic modulations all escaping particles move ballistically into the same direction, leading to a giant directed current.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا