ترغب بنشر مسار تعليمي؟ اضغط هنا

The detection of gamma-rays from dark matter (DM) annihilation is among the scientific goals of the Fermi Large Area Telescope (formerly known as GLAST) and Cherenkov telescopes. In this paper we investigate the existence of realistic chances of such a discovery selecting some nearby dwarf spheroidal galaxies (dSph) as a target. We study the detectability with the Fermi-LAT of the gamma-ray flux from DM annihilation in Draco, Ursa Minor, Carina, and Sextans, for which the state-of-art DM density profiles were available. We assume the DM is made of Weakly Interacting Massive Particles such as the Lightest Supersymmetric Particle (LSP) and compute the expected gamma-ray flux for optimistic choices of the unknown underlying particle physics parameters. We then compute the boost factors due to the presence of DM clumps and of a central supermassive black hole. Finally, we compare our predictions with the Fermi-LAT sensitivity maps. We find that the dSph galaxies shine above the Galactic smooth halo: e.g., the Galactic halo is brighter than the Draco dSph only for angles smaller than 2.3 degrees above the Galactic Center. We also find that the presence of a cusp or a constant density core in the DM mass density profile does not produce any relevant effect in the gamma-ray flux due to the fortunate combination of the geometrical acceptance of the Fermi-LAT detector and the distance of the galaxies and that no significant enhancement is given by the presence of a central black hole or a population of sub-subhalos. We conclude that, even for the most optimistic scenario of particle physics, the gamma-ray flux from DM annihilation in the dSph galaxies of the LG would be too low to be detected with the Fermi-LAT.
Upcoming $gamma$-ray satellites will search for Dark Matter annihilations in Milky Way substructures (or clumps). The prospects for detecting these objects strongly depend on the assumptions made on the distribution of Dark Matter in substructures, a nd on the distribution of substructures in the Milky Way halo. By adopting simplified, yet rather extreme, prescriptions for these quantities, we compute the number of sources that can be detected with upcoming experiments such as GLAST, and show that, for the most optimistic particle physics setup ($m_chi=40$ GeV and annihilation cross section $sigma v = 3 times 10^{-26}$ cm$^3$ s$^{-1}$), the result ranges from zero to $sim$ hundred sources, all with mass above $10^{5}Modot$. However, for a fiducial DM candidate with mass $m_chi=100$ GeV and $sigma v = 10^{-26}$ cm$^3$ s$^{-1}$, at most a handful of large mass substructures can be detected at $5 sigma$, with a 1-year exposure time, by a GLAST-like experiment. Scenarios where micro-clumps (i.e. clumps with mass as small as $10^{-6}Modot$) can be detected are severely constrained by the diffuse $gamma$-ray background detected by EGRET.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا