ترغب بنشر مسار تعليمي؟ اضغط هنا

Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal f or investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Center. We find that two such isolated massive stars display apparent bow shocks and hence may be runaways from their birthplace. Thus, some isolated massive stars in the Galactic Center region might have been born in star clusters known in this region. However, no bow shock is detected around the isolated star WR102ka (Peony nebula star), which is one of the most massive and luminous stars in the Galaxy. This star is located at the center of an associated dusty circumstellar nebula. To study whether a star cluster may be hidden in the surroundings of WR102ka, to obtain new and better spectra of this star, and to measure its radial velocity, we obtained observations with the integral-field spectrograph SINFONI at the ESOs Very Large Telescope (VLT). Our observations confirm that WR102ka is one of the most massive stars in the Galaxy and reveal that this star is not associated with a star cluster. We suggest that WR102ka has been born in relative isolation, outside of any massive star cluster.
We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet star. 400 ks observations of WR 6 by the XMM-Newton-telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability could create shocks. The X-ray emitting plasma reaches temperatures up to 50,MK, and is embedded within the un-shocked, cool stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at approx 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the line-driving instability nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow sticky clumps that resist acceleration. Our new data show that the X-rays in single WR-star are generated by some special mechanism different from the one operating in the O-star winds.
We report the discovery of variability in the X-ray emission from the Wolf-Rayet type star WR 65. Using archival Chandra data spanning over 5 yr we detect changes of the X-ray flux by a factor of 3 accompanied by changes in the X-ray spectra. We beli eve that this X-ray emission originates from wind-wind collision in a massive binary system. The observed changes can be explained by the variations in the emission measure of the hot plasma, and by the different absorption column along the binary orbit. The X-ray spectra of WR 65 display prominent emission features at wavelengths corresponding to the lines of strongly ionized Fe, Ca, Ar, S, Si, and Mg. WR 65 is a carbon rich WC9d star that is a persistent dust maker. This is the first investigation of any X-ray spectrum for a star of this spectral type. There are indications that the dust and the complex geometry of the colliding wind region are pivotal in explaining the X-ray properties of WR 65.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا