ﻻ يوجد ملخص باللغة العربية
We report the discovery of variability in the X-ray emission from the Wolf-Rayet type star WR 65. Using archival Chandra data spanning over 5 yr we detect changes of the X-ray flux by a factor of 3 accompanied by changes in the X-ray spectra. We believe that this X-ray emission originates from wind-wind collision in a massive binary system. The observed changes can be explained by the variations in the emission measure of the hot plasma, and by the different absorption column along the binary orbit. The X-ray spectra of WR 65 display prominent emission features at wavelengths corresponding to the lines of strongly ionized Fe, Ca, Ar, S, Si, and Mg. WR 65 is a carbon rich WC9d star that is a persistent dust maker. This is the first investigation of any X-ray spectrum for a star of this spectral type. There are indications that the dust and the complex geometry of the colliding wind region are pivotal in explaining the X-ray properties of WR 65.
Cosmic-ray acceleration has been a long-standing mystery and despite more than a century of study, we still do not have a complete census of acceleration mechanisms. The collision of strong stellar winds in massive binary systems creates powerful sho
Using Chandra ACIS-S, we have obtained imaging Xray spectrophotometry of the Pluto system in support of the New Horizons flyby on 14 July 2015. 174 ksec of observations were obtained on 4 visits in Feb 2014 to Aug 2015. We measured a net signal of 6.
The eccentric WR+O binary system WR 140 produces dust for a few months at intervals of 7.94 yrs coincident with periastron passage. We present the first resolved images of this dust shell, at binary phases ~0.039 and ~0.055, using aperture masking te
In this contribution we model the non-thermal emission (from radio to gamma-rays) produced in the compact (and recently detected) colliding wind region in the multiple stellar system Cyg OB2 #5. We focus our study on the detectability of the produced gamma-rays.
In the colliding-wind region of massive binaries, non-thermal radio emission occurs. This non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and t