ترغب بنشر مسار تعليمي؟ اضغط هنا

139 - M. D. Lehnert 2015
The apparent correlation between the specific star formation rate (sSFR) and total stellar mass (M_star) of galaxies is a fundamental relationship indicating how they formed their stellar populations. To attempt to understand this relation, we hypoth esize that the relation and its evolution is regulated by the increase in the stellar and gas mass surface density in galaxies with redshift, which is itself governed by the angular momentum of the accreted gas, the amount of available gas, and by self-regulation of star formation. With our model, we can reproduce the specific SFR-M_star relations at z~1-2 by assuming gas fractions and gas mass surface densities similar to those observed for z=1-2 galaxies. We further argue that it is the increasing angular momentum with cosmic time that causes a decrease in the surface density of accreted gas. The gas mass surface densities in galaxies are controlled by the centrifugal support (i.e., angular momentum), and the sSFR is predicted to increase as, sSFR(z)=(1+z)^3/t_H0, as observed (where t_H0 is the Hubble time and no free parameters are necessary). At z>~2, we argue that star formation is self-regulated by high pressures generated by the intense star formation itself. The star formation intensity must be high enough to either balance the hydrostatic pressure (a rather extreme assumption) or to generate high turbulent pressure in the molecular medium which maintains galaxies near the line of instability (i.e. Toomre Q~1). The most important factor is the increase in stellar and gas mass surface density with redshift, which allows distant galaxies to maintain high levels of sSFR. Without a strong feedback from massive stars, such galaxies would likely reach very high sSFR levels, have high star formation efficiencies, and because strong feedback drives outflows, ultimately have an excess of stellar baryons (abridged).
(abridged) We have analyzed the properties of the rest-frame optical emission lines of a sample of 53 intensely star forming galaxies at z=1.3 to 2.7 observed with SINFONI on the ESO-VLT. We find large velocity dispersions in the lines, sigma=30-250 km/s. Our data agree well with simulations where we applied beam-smearing and assumed a scaling relation of the form: velocity dispersion is proportional to the square root of the star-formation intensity (star-formation rate per unit area). We conclude that the dispersions are primarily driven by star formation. To explain the high surface brightness and optical line ratios, high thermal pressures in the warm ionized medium, WIM, are required (log P/k (K/cm^3)>~6-7). Such thermal pressures in the WIM are similar to those observed in nearby starburst galaxies, but occur over much larger physical scales. Moreover, the relatively low ionization parameters necessary to fit the high surface brightnesses and optical line ratios suggest that the gas is not only directly associated with regions of star formation, but is wide spread throughout the general ISM. Thus the optical emission line gas is a tracer of the large scale dynamics of the bulk of the ISM. We present a simple model for the energy input from young stars in an accreting galaxy, to argue that the intense star-formation is supporting high turbulent pressure, which roughly balances the gravitational pressure and thus enables distant gas accreting disks to maintain a Toomre disk instability parameter Q~1. For a star formation efficiency of 3%, only 5-15% of the mechanical energy from young stars that is deposited in the ISM is needed to support the level of turbulence required for maintaining this balance. Since this balance is maintained by energy injected into the ISM by the young stars themselves, this suggests that star formation in high redshift galaxies is self-regulating.
We analyze the physical conditions in the interstellar gas of 11 actively star-forming galaxies at z~2, based on integral-field spectroscopy from the ESO-VLT and HST/NICMOS imaging. We concentrate on the high H-alpha surface brightnesses, large line widths, line ratios and the clumpy nature of these galaxies. We show that photoionization calculations and emission line diagnostics imply gas pressures and densities that are similar to the most intense nearby star-forming regions at z=0 but over much larger scales (10-20 kpc). A relationship between surface brightness and velocity dispersion can be explained through simple energy injection arguments and a scaling set by nearby galaxies with no free parameters. The high velocity dispersions are a natural consequence of intense star formation thus regions of high velocity dispersion are not evidence for mass concentrations such as bulges or rings. External mechanisms like cosmological gas accretion generally do not have enough energy to sustain the high velocity dispersions. In some cases, the high pressures and low gas metallicites may make it difficult to robustly distinguish between AGN ionization cones and star formation, as we show for BzK-15504 at z=2.38. We construct a picture where the early stages of galaxy evolution are driven by self-gravity which powers strong turbulence until the velocity dispersion is high. Then massive, dense, gas-rich clumps collapse, triggering star formation with high efficiencies and intensities as observed. At this stage, the intense star formation is likely self-regulated by the mechanical energy output of massive stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا