ترغب بنشر مسار تعليمي؟ اضغط هنا

We report $^{77}$Se and $^{63}$Cu nuclear magnetic resonance (NMR) investigation on the charge-density-wave (CDW) superconductor Cu$_x$TiSe$_2$ ($x=0.05$ and 0.07). At high magnetic fields where superconductivity is suppressed, the temperature depend ence of $^{77}$Se and $^{63}$Cu spin-lattice relaxation rates 1/T_{1}$ follow a linear relation. The slope of $^{77}1/T_{1}$ vs emph{T} increases with the Cu doping. This can be described by a modified Korringa relation which suggests the significance of electronic correlations and the Se 4emph{p}- and Ti 3emph{d}-band contribution to the density of states at the Fermi level in the studied compounds.
We report on the use of $^{69,71}$Ga nuclear magnetic resonance to probe spin dynamics in the rare-earth kagom{e} system Pr$_3$Ga$_5$SiO$_{14}$. We find that the spin-lattice relaxation rate $^{69}1/T_1$ exhibits a maximum around 30 K, below which th e Pr$^{3+}$ spin correlation time $tau$ shows novel field-dependent behavior consistent with a field-dependent gap in the excitation spectrum. The spin-spin relaxation rate $^{69}1/T_{2}$ exhibits a peak at a lower temperature (10 K) below which field-dependent power-law behavior close to $T^{2}$ is observed. These results point to field-induced formation of nanoscale magnetic clusters consistent with recent neutron scattering measurements.
Complementary $^{77}$Se nuclear magnetic resonance (NMR) and electrical transport have been used to correlate the spin density dynamics with the subphases of the field-induced spin density wave (FISDW) ground state in tmt. We find that the peaks in t he spin-lattice relaxation rate 1/T$_1$ appear within the metal-FISDW phase boundary and/or at first-order subphase transitions. In the quantum limit above 25 T, the NMR data gives an insight into the FISDW electronic structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا