ترغب بنشر مسار تعليمي؟ اضغط هنا

When a thermonuclear X-ray burst ignites on an accreting neutron star, the accretion disk undergoes sudden strong X-ray illumination, which can drive a range of processes in the disk. Observations of superbursts, with durations of several hours, prov ide the best opportunity to study these processes and to probe accretion physics. Using detailed models of ionized reflection, we perform time resolved spectroscopy of the superburst observed from 4U 1636-536 in 2001 with RXTE. The spectra are consistent with a blackbody reflecting off a photoionized accretion disk, with the ionization state dropping with time. The evolution of the reflection fraction indicates that the initial reflection occurs from a part of the disk at larger radius, subsequently transitioning to reflection from an inner region of the disk. Even though this superburst did not reach the Eddington limit, we find that a strong local absorber develops during the superburst. Including this event, only two superbursts have been observed by an instrument with sufficient collecting area to allow for this analysis. It highlights the exciting opportunity for future X-ray observatories to investigate the processes in accretion disks when illuminated by superbursts.
Recent studies have shown that runaway thermonuclear burning of material accreted onto neutron stars, i.e. Type I X-ray bursts, may affect the accretion disk. We investigate this by performing a detailed time-resolved spectral analysis of the superbu rst from 4U 1636-536 observed in 2001 with the Rossi X-ray Timing Explorer. Superbursts are attributed to the thermonuclear burning of carbon, and are approximately 1000 times more energetic than the regular short Type I bursts. This allows us to study detailed spectra for over 11 ks, compared to at most 100 s for regular bursts. A feature is present in the superburst spectra around 6.4 keV that is well fit with an emission line and an absorption edge, suggestive of reflection of the superburst off the accretion disk. The line and edge parameters evolve over time: the edge energy decreases from 9.4 keV at the peak to 8.1 keV in the tail, and both features become weaker in the tail. This is only the second superburst for which this has been detected, and shows that this behavior is present even without strong radius expansion. Furthermore, we find the persistent flux to almost double during the superburst, and return to the pre-superburst level in the tail. The combination of reflection features and increased persistent emission indicates that the superburst had a strong impact on the inner accretion disk, and it emphasizes that X-ray bursts provide a unique probe of accretion physics.
The ultracompact X-ray binary 4U 1820-30 is well known for its ~170-d superorbital modulation in X-ray flux and spectrum, and the exclusiveness of bursting behavior to the low hard island state. In May-June 2009, there was an exceptionally long 51-d low state. This state was well covered by X-ray observations and 12 bursts were detected, 9 with the high-throughput RXTE. We investigate the character of these X-ray bursts and find an interesting change in their photospheric expansion behavior. At the lowest inferred mass accretion rates, this expansion becomes very large in 4 bursts and reaches the so-called superexpansion regime. We speculate that this is due to the geometry of the inner accretion flow being spherical and a decreasing accretion rate: when the flow geometry nearest to the neutron star is spherical and the accretion rate is low, the ram pressure of the accretion disk may become too low to counteract that of the photospheric expansion. In effect, this may provide a novel means to probe the accretion flow. Additionally, we observe a peculiar effect: the well-known cessation of X-ray bursts in the high state is too quick to be consistent with a transition to stable helium burning. We suggest an alternative explanation, that the cessation is due to the introduction of a non-nuclear heat source in the neutron star ocean.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا