ترغب بنشر مسار تعليمي؟ اضغط هنا

At high luminosities black hole binaries show spectra with a strong disc component accompanied by an equally strong tail where at least some of the electrons are non-thermal. We reanalyze the simultaneous ASCA-RXTE-OSSE data from the 1998 outburst of XTE J1550-564, which span 0.7-1000 keV and remain the best data available of a black hole binary in this state. We reassess the importance of electron-positron pair production using a realistically high value of the source compactness for the first time. The lack of an observable annihilation line together with the observed gamma-ray flux beyond 511 keV constrains the maximum electron Lorentz factor to be leq 10 and the slope of the injected electrons to leq 2.5. We also use the fast (10-50 Hz) variability spectrum to constrain the spatial dependence of the electron heating and acceleration. We find that the spectrum of the fast variability is consistent with being fully thermal, so that the observed non-thermal emission is produced from further out in the flow.
We extract the spectra of the fastest variability (above 10 Hz) from the black hole XTE J1550-564 during a transition from hard to soft state on the rise to outburst. We confirm previous results that the rapid variability contains no significant disc component despite this being strongly present in the total spectrum of the softer observations. We model ionised reflection significantly better than previous work, and show that this is also suppressed in the rapid variability spectrum compared to the total emission. This is consistent with the fast variability having its origin in a hot inner flow close to the black hole rather than in the accretion disc or in a corona above it. However, the rapid variability spectrum is not simply the same as the total Comptonised emission. It is always significantly harder, by an amount which increases as the spectrum softens during the outburst. This adds to evidence from time lags that the Comptonisation region is inhomogeneous, with harder spectra produced closest to the black hole, the same region which produces the fastest variability.
We elaborate on a recently proposed model for subsonic quasi-spherical accretion onto slowly rotating pulsars, in which accretion is mediated through a hot quasi-static shell above the neutron star magnetosphere. We show that under the same external conditions, two regimes of subsonic accretion are possible, depending on if plasma cooling in the transition zone is dominated by Compton or radiative processes. We suggest that a transition from the higher luminosity Compton cooling regime to the lower luminosity radiative cooling regime can be responsible for the onset of the `off-states repeatedly observed in several low luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2 and 4U 1907+09. We further suggest that the triggering of the transition may be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity.
We model the broad-band X-ray spectrum of Cyg X-3 in all states displayed by this source as observed by the Rossi X-ray Timing Explorer. From our models, we derive for the first time unabsorbed spectral shapes and luminosities for the full range of s pectral states. We interpret the unabsorbed spectra in terms of Comptonization by a hybrid electron distribution and strong Compton reflection. We study the spectral evolution and compare with other black hole as well as neutron star sources. We show that a neutron star accretor is not consistent with the spectral evolution as a function of Ledd and especially not with the transition to a hard state. Our results point to the compact object in Cyg X-3 being a massive, ~30 Msun black hole.
Aims. We investigate observations of the X-ray binary Cygnus X-1 with unusually high hardness and low flux. In particular, we study the characteristic frequencies seen in the PDS and the hardness-flux correlation within and between these observations . Methods. We analyse observations of Cyg X-1 during periods when the source reaches its highest hardness levels (> 1 for the 9-20 keV over 2-4 keV RXTE/PCA count ratios, corresponding to Gamma < 1.6). Using the relativistic precession model to interpret the PDS we estimate a value for the inner radius of the accretion disc. We also study the hardness-flux correlation. Results. In the selected observations, the characteristic frequencies seen in the power spectrum are shifted to the lowest end of their frequency range. Within a single observation, the hardness-flux correlation is very weak, contrary to the negative correlation normally observed in the hard state. We suggest that this could be interpreted as the inner disc boundary being at large radii (> 50 Rg), thereby requiring more time to adjust to a changing accretion rate than allowed by a single RXTE observation, and compare our findings to estimates of the viscous time scale responsible for small scale variability in the system.
The X-ray binary Cygnus X-3 is a highly variable X-ray source that displays a wide range of observed spectral states. One of the main states is significantly harder than the others, peaking at ~ 20 keV, with only a weak low-energy component. Due to t he enigmatic nature of this object, hidden inside the strong stellar wind of its Wolf-Rayet companion, it has remained unclear whether this state represents an intrinsic hard state, with truncation of the inner disc, or whether it is just a result of increased local absorption. We study the X-ray light curves from RXTE/ASM and CGRO/BATSE in terms of distributions and correlations of flux and hardness and find several signs of a bimodal behaviour of the accretion flow that are not likely to be the result of increased absorption in a surrounding medium. Using INTEGRAL observations, we model the broad-band spectrum of Cyg X-3 in its apparent hard state. We find that it can be well described by a model of a hard state with a truncated disc, despite the low cut-off energy, if the accreted power is supplied to the electrons in the inner flow in the form of acceleration rather than thermal heating, resulting in a hybrid electron distribution and a spectrum with a significant contribution from non-thermal Comptonization, usually observed only in soft states. The high luminosity of this non-thermal hard state implies that either the transition takes place at significantly higher L/Ledd than in the usual advection models, or the mass of the compact object is > 20 Msun, possibly making it the most massive black hole observed in an X-ray binary in our Galaxy so far. We find that an absorption model as well as a model of almost pure Compton reflection also fit the data well, but both have difficulties explaining other results, in particular the radio/X-ray correlation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا