ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral variability in Cygnus X-3

104   0   0.0 ( 0 )
 نشر من قبل Linnea Hjalmarsdotter
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model the broad-band X-ray spectrum of Cyg X-3 in all states displayed by this source as observed by the Rossi X-ray Timing Explorer. From our models, we derive for the first time unabsorbed spectral shapes and luminosities for the full range of spectral states. We interpret the unabsorbed spectra in terms of Comptonization by a hybrid electron distribution and strong Compton reflection. We study the spectral evolution and compare with other black hole as well as neutron star sources. We show that a neutron star accretor is not consistent with the spectral evolution as a function of Ledd and especially not with the transition to a hard state. Our results point to the compact object in Cyg X-3 being a massive, ~30 Msun black hole.



قيم البحث

اقرأ أيضاً

We report the results of an observation of Cygnus X-1 with INTEGRAL, that we combine with simultaneous radio observations with the Ryle telescope. Both spectral and variability properties of the source indicate that Cygnus X-1 was in an Intermediate State. The INTEGRAL spectrum shows a high-energy cut-off or break around 100 keV. The shape of this cut-off differs from pure thermal Comptonisation, suggesting the presence of a non-thermal component at higher energies.The average broad band spectrum is well represented by hybrid thermal/non-thermal Comptonisation models. During the 4 day long observation the source showed an important spectral and flux variability. A principal component analysis demonstrates that most of this variability occurs through 2 independent modes. The first mode consists in changes in the overall luminosity on time scale of hours with almost constant spectra that are strikingly uncorrelated with the variable radio flux. We interpret this variability mode as variations of the dissipation rate in the corona. The second variability mode consists in a pivoting of the spectrum around 10 keV. It acts on a longer time-scale: initially soft, the spectrum hardens in the first part of the observation and then softens again. This pivoting pattern is strongly correlated with the radio (15 GHz) emission: radio fluxes are stronger when the INTEGRAL spectrum is harder. We propose that the pivoting mode represents a mini state transition from a nearly High Soft State to a nearly Low Hard State, and back. This mini-transition would be caused by changes in the soft cooling photons flux in the hot Comptonising plasma associated with an increase of the temperature of the accretion disc. The jet power then appears to be anti-correlated with the disc luminosity and unrelated to the coronal power.
121 - J. Wilms 2005
(abbreviated abstract) We present the long term spectral evolution of the Galactic black hole candidate Cygnus X-1 in the X-rays and at 15GHz using ~200 pointed observations taken between early 1999 and late 2004 with RXTE and the Ryle radio telescop e. The X-ray spectra are remarkably well described by a simple broken power law spectrum with an exponential cutoff. Physically motivated Comptonization models, e.g., compTT or eqpair, can reproduce this simplicity. Broken power law models reveal a significant linear correlation between the photon index of the lower energy power law and the hardening of the power law at approximately 10keV. Comptonization models show that the bolometric flux of a soft excess (e.g., disk component) is strongly correlated with the compactness ratio of the Comptonizing medium. We also find that the fraction of the time spent in low radio emission/soft X-ray spectral states has increased from ~10% in 1996-2000 to ~34% since early 2000. Radio flares typically occur during state transitions and failed state transitions. There is also a strong correlation between the 10-50keV X-ray flux and the radio luminosity of the source. We demonstrate that rather than there being distinctly separated states, in contrast to the timing properties the spectrum of Cyg X-1 shows variations between extremes of properties, with clear cut examples of spectra at every intermediate point in the observed spectral correlations.
137 - V. Grinberg , N. Hell , J. Wilms 2013
The knowledge of the spectral state of a black hole is essential for the interpretation of data from black holes in terms of their emission models. Based on pointed observations of Cyg X-1 with the Rossi X-ray timing Explorer (RXTE) that are used to classify simultaneous RXTE-ASM observations, we develop a scheme based on RXTE -ASM colors and count rates that can be used to classify all observations of this canonical black hole that were performed between 1996 and 2011. We show that a simple count rate criterion, as used previously, leads to a significantly higher fraction of misclassified observations. This scheme enables us to classify single INTEGRAL-IBIS science windows and to obtain summed spectra for the soft, intermediate and hard state with low contamination by other states.
Gamma-ray observations of microquasars at high and very-high energies can provide valuable information of the acceleration processes inside the jets, the jet-environment interaction and the disk-jet coupling. Two high-mass microquasars have been deep ly studied to shed light on these aspects: Cygnus X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray spectral states of black hole transients, where the radiation is dominated by non-thermal emission from the corona and jets and by thermal emission from the disk, respectively. Here, we report on the detection of Cygnus X-1 above 60 MeV using 7.5 yr of Pass8 Fermi-LAT data, correlated with the hard X-ray state. A hint of orbital flux modulation was also found, as the source is only detected in phases around the compact object superior conjunction. We conclude that the high-energy gamma-ray emission from Cygnus X-1 is most likely associated with jets and its detection allow us to constrain the production site. Moreover, we include in the discussion the final results of a MAGIC long-term campaign on Cygnus X-1 that reaches almost 100 hr of observations at different X-ray states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring activity period in radio and high-energy gamma rays, similar to the one that led to its detection in the high-energy regime in 2009. MAGIC performed comprehensive follow-up observations for a total of about 70 hr. We discuss our results in a multi-wavelength context.
The radiatively driven wind of the primary star in wind-fed X-ray binaries can be suppressed by the X-ray irradiation of the compact secondary star. This causes feedback between the wind and the X-ray luminosity of the compact star. We estimated how the wind velocity on the face-on side of the donor star depends on the spectral state of the high-mass X-ray binary Cygnus X-3. We modeled the supersonic part of the wind by computing the line force (force multiplier) with the Castor, Abbott and Klein formalism and XSTAR physics and by solving the mass conservation and momentum balance equations. We computed the line force locally in the wind considering the radiation fields from both the donor and the compact star in each spectral state. The wind equations were solved at different orbital angles from the line joining the stars and taking the effect of wind clumping into account. Wind-induced accretion luminosities were estimated using the Bondi-Hoyle-Lyttleton formalism and computed wind velocities at the compact star. We found a correlation between the luminosities estimated from the observations for each spectral state of Cyg X-3 and the computed accretion luminosities assuming moderate wind clumping and a low mass of the compact star. For high wind clumping this correlation disappears. We show that soft X-rays (EUV) from the compact star penetrate the wind from the donor star and diminish the line force and consequently the wind velocity on the face-on side. This increases the computed accretion luminosities qualitatively in a similar manner as observed in the spectral evolution of Cyg X-3 for a moderate clumping volume filling factor and a compact star mass of a few (2 - 3) solar masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا