ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new data obtained with SpIOMM, the imaging Fourier transform spectrometer attached to the 1.6-m telescope of the Observatoire du Mont-Megantic in Quebec. Recent technical and data reduction improvements have significantly increased SpIOMMs capabilities to observe fainter objects or weaker nebular lines, as well as continuum sources and absorption lines, and to increase its modulation efficiency in the near ultraviolet. To illustrate these improvements, we present data on the supernova remnant Cas A, planetary nebulae M27 and M97, the Wolf-Rayet ring nebula M1-67, spiral galaxies M63 and NGC 3344, as well as the interacting pair of galaxies Arp 84.
116 - V. Petit , G. A. Wade , L. Drissen 2008
In massive stars, magnetic fields are thought to confine the outflowing radiatively-driven wind, resulting in X-ray emission that is harder, more variable and more efficient than that produced by instability-generated shocks in non-magnetic winds. Al though magnetic confinement of stellar winds has been shown to strongly modify the mass-loss and X-ray characteristics of massive OB stars, we lack a detailed understanding of the complex processes responsible. The aim of this study is to examine the relationship between magnetism, stellar winds and X-ray emission of OB stars. In conjunction with a Chandra survey of the Orion Nebula Cluster, we carried out spectropolarimatric ESPaDOnS observations to determine the magnetic properties of massive OB stars of this cluster.
In massive stars, magnetic fields are thought to confine the outflowing radiatively-driven wind, resulting in X-ray emission that is harder, more variable and more efficient than that produced by instability-generated shocks in non-magnetic winds. Al though magnetic confinement of stellar winds has been shown to strongly modify the mass-loss and X-ray characteristics of massive OB stars, we lack a detailed understanding of the complex processes responsible. The aim of this study is to examine the relationship between magnetism, stellar winds and X-ray emission of OB stars. In conjunction with a Chandra survey of the Orion Nebula Cluster, we carried out spectropolarimatric ESPaDOnS observations to determine the magnetic properties of massive OB stars of this cluster. We found of two new massive magnetic stars in the Orion Nebula Cluster: HD 36982 and HD 37061, for which the estimated dipole polar strengths are 1150 (+320 -200) G and 620 (+220 -170) G, respectively. However, the apparent lack of clear correlation between X-ray indicator and the presence of a magnetic fields brings forth new challenges for understanding the processes leading to X-ray emission in massive stars.
We present optical spectra of 14 emission-line stars in M33s giant HII regions NGC 592, NGC 595 and NGC 604: five of them are known WR stars, for which we present a better quality spectrogram, eight were WR candidates based on narrow-band imagery and one is a serendipitous discovery. Spectroscopy confirms the power of interference filter imagery to detect emission-line stars down to an equivalent width of about 5 A in crowded fields. We have also used archival HST/WFPC2 images to correctly identify emission-line stars in NGC 592 and NGC 588. emission-line stars in NGC 592 and NGC 588.
46 - V. Petit , G.A. Wade , L. Drissen 2008
The origin of the magnetic fields in neutron stars, and the physical differences between magnetars and strongly magnetised radio pulsars are still under vigorous debate. It has been suggested that the properties of the progenitors of neutron stars (t he massive OB stars), such as rotation, magnetic fields and mass, may play an important role in the outcome of core collapse leading to type II SNe. Therefore, knowing the magnetic properties of the progenitor OB stars would be an important asset for constraining models of stellar evolution leading to the birth of a neutron star. We present here the beginning of a broad study with the goal of characterising the magnetic properties of main sequence massive OB stars. We report the detection of two new massive magnetic stars in the Orion Nebula Cluster: Par 1772 (HD 36982) and NU Ori (HD 37061), for which the estimated dipole polar strengths, with 1 sigma error bars, are 1150 (+320,-200) G and 650 (+220,-170) G respectively.
38 - V. Petit , G.A. Wade , L. Drissen 2007
Ferrario & Wickramasinghe (2006) explored the hypothesis that the magnetic fields of neutron stars are of fossil origin. In this context, they predicted the field distribution of the progenitor OB stars, finding that 5 per cent of main sequence massi ve stars should have fields in excess of 1kG. We have carried out sensitive ESPaDOnS spectropolarimetric observations to search for direct evidence of such fields in all massive B- and O-type stars in the Orion Nebula Cluster star-forming region. We have detected unambiguous Stokes V Zeeman signatures in spectra of three out of the eight stars observed (38%). Using a new state-of-the-art Bayesian analysis, we infer the presence of strong (kG), organised magnetic fields in their photospheres. For the remaining five stars, we constrain any dipolar fields in the photosphere to be weaker than about 200G. Statistically, the chance of finding three ~kG fields in a sample of eight OB stars is quite low (less than 1%) if the predictions of Ferrario & Wickramasinghe are correct. This implies that either the magnetic fields of neutron stars are not of fossil origin, that the flux-evolution model of Ferrario & Wickramasinghe is incomplete, or that the ONC has unusual magnetic properties. We are undertaking a study of other young star clusters, in order to better explore these possibilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا