ترغب بنشر مسار تعليمي؟ اضغط هنا

139 - L. Bongini , L. Casetti , R. Livi 2008
A method for reconstructing the energy landscape of simple polypeptidic chains is described. We show that we can construct an equivalent representation of the energy landscape by a suitable directed graph. Its topological and dynamical features are s hown to yield an effective estimate of the time scales associated with the folding and with the equilibration processes. This conclusion is drawn by comparing molecular dynamics simulations at constant temperature with the dynamics on the graph, defined by a temperature dependent Markov process. The main advantage of the graph representation is that its dynamics can be naturally renormalized by collecting nodes into hubs, while redefining their connectivity. We show that both topological and dynamical properties are preserved by the renormalization procedure. Moreover, we obtain clear indications that the heteropolymers exhibit common topological properties, at variance with the homopolymer, whose peculiar graph structure stems from its spatial homogeneity. In order to obtain a clear distinction between a fast folder and a slow folder in the heteropolymers one has to look at kinetic features of the directed graph. We find that the average time needed to the fast folder for reaching its native configuration is two orders of magnitude smaller than its equilibration time, while for the bad folder these time scales are comparable. Accordingly, we can conclude that the strategy described in this paper can be successfully applied also to more realistic models, by studying their renormalized dynamics on the directed graph, rather than performing lengthy molecular dynamics simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا