ﻻ يوجد ملخص باللغة العربية
A method for reconstructing the energy landscape of simple polypeptidic chains is described. We show that we can construct an equivalent representation of the energy landscape by a suitable directed graph. Its topological and dynamical features are shown to yield an effective estimate of the time scales associated with the folding and with the equilibration processes. This conclusion is drawn by comparing molecular dynamics simulations at constant temperature with the dynamics on the graph, defined by a temperature dependent Markov process. The main advantage of the graph representation is that its dynamics can be naturally renormalized by collecting nodes into hubs, while redefining their connectivity. We show that both topological and dynamical properties are preserved by the renormalization procedure. Moreover, we obtain clear indications that the heteropolymers exhibit common topological properties, at variance with the homopolymer, whose peculiar graph structure stems from its spatial homogeneity. In order to obtain a clear distinction between a fast folder and a slow folder in the heteropolymers one has to look at kinetic features of the directed graph. We find that the average time needed to the fast folder for reaching its native configuration is two orders of magnitude smaller than its equilibration time, while for the bad folder these time scales are comparable. Accordingly, we can conclude that the strategy described in this paper can be successfully applied also to more realistic models, by studying their renormalized dynamics on the directed graph, rather than performing lengthy molecular dynamics simulations.
Assemblies of allosteric proteins, nano-scale Brownian computers, are the principle information processing devices in biology. The troponin C-troponin I (TnC-TnI) complex, the Ca$^{2+}$-sensitive regulatory switch of the heart, is a paradigm for Brow
Directed paths have been used extensively in the scientific literature as a model of a linear polymer. Such paths models in particular the conformational entropy of a linear polymer and the effects it has on the free energy. These directed models are simplifi
We study the problem of identifying macroscopic structures in networks, characterizing the impact of introducing link directions on the detectability phase transition. To this end, building on the stochastic block model, we construct a class of hardl
We present a model for semiflexible polymers in Hamiltonian formulation which interpolates between a Rouse chain and worm-like chain. Both models are realized as limits for the parameters. The model parameters can also be chosen to match the experime
We study the dynamical properties of semiflexible polymers with a recently introduced bead-spring model. We focus on double-stranded DNA. The two parameters of the model, $T^*$ and $ u$, are chosen to match its experimental force-extension curve. The