ترغب بنشر مسار تعليمي؟ اضغط هنا

41 - L. Bezrukov , V. Sinev 2014
Geoneutrino is a new channel of information about geochemical composition of the Earth. We alnalysed here the following problem. What statistics do we need to distinguish between predictions of Bulk Silicate Earth model and Hydridic Earth model for T h/U signal ratio? We obtained the simple formula for estimation of error of Th/U signal ratio. Our calculations show that we need more than $22 kt cdot year$ exposition for Gran-Sasso underground laboratory and Sudbury Neutrino Observatory. We need more than $27 kt cdot year$ exposition for Kamioka site in the case of stopping of all Japanese nuclear power plants.
Multi-pixel photodiodes operating in a limited Geiger mode will be used for photoreadout of scintillator counters in underground cosmic ray experiment EMMA. Main parameters of photodiodes and the performance of EMMA scintillator counters are presented.
165 - M. Barnabe Heider 2008
The GERDA (GERmanium Detector Array) experiment aiming to search for the neutrinoless double beta decay of 76Ge at the Laboratori Nazionali Del Gran Sasso (LNGS), Italy, will operate bare enriched high-purity germanium (HPGe) detectors in liquid argo n. GERDA Phase I will use the enriched diodes from the previous Heidelberg-Moscow (HdM) and IGEX experiments. With the HPGe detectors mounted in a low-mass holder, GERDA aims at an excellent energy resolution and extremely low background. The goal is to check the claim for the neutrinoless double beta decay evidence in the HdM 76Ge experiment within one year of data taking. Before dismounting the enriched diodes from their cryostat, the performance parameters of the HdM and the IGEX detectors have been measured. The diodes have been removed from their cryostats, their dimensions measured and they have been put under va-cuum in a transportation container. They are now being refurbished for GERDA Phase I at Canberra Semiconductor NV. Before operating the enriched diodes, a non-enriched HPGe p-type detector mounted in a low-mass holder is operated in the liquid argon test facility of the GERDA Detector Laboratory (GDL) at LNGS. Since January 2006, the testing of the prototype detector is being carried out in the GDL as well as at the site of the detector manufacturer.
A novel formulation to dope organic liquid scintillators (OLS) with indium at concentrations up to 10% is presented: it is based on specific indium carboxylate compounds adequately synthesized. The produced In-OLS has been characterized: it has light yield 8500 ph/MeV at indium concentration 5.5% and light attenuation length of 2,5 m at wavelength of 430 nm. The scintillator properties were stable during all time of investigation (~ 1 years). The produced In-OLS is compared to other In-OLS formulations and shows superior performances. The developed methodic to metal dope OLS can be easily extended to other metals as Gd, Nd, Cd.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا