ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization and performances of new indium loaded organic liquid scintillators, based on novel indium carboxilate compounds

45   0   0.0 ( 0 )
 نشر من قبل Carla Maria Cattadori
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel formulation to dope organic liquid scintillators (OLS) with indium at concentrations up to 10% is presented: it is based on specific indium carboxylate compounds adequately synthesized. The produced In-OLS has been characterized: it has light yield 8500 ph/MeV at indium concentration 5.5% and light attenuation length of 2,5 m at wavelength of 430 nm. The scintillator properties were stable during all time of investigation (~ 1 years). The produced In-OLS is compared to other In-OLS formulations and shows superior performances. The developed methodic to metal dope OLS can be easily extended to other metals as Gd, Nd, Cd.

قيم البحث

اقرأ أيضاً

Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to oth er technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.
In this contribution we present a new concept of the large acceptance detector systems based on organic scintillators which may allow for simultaneous diagnostic of large fraction of the human body. Novelty of the concept lies in employing large bloc ks of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes.
In this work we report the performances and the chemical and physical properties of a (2 x 1.2) ton organic liquid scintillator target doped with Gd up to ~0.1%, and the results of a 2 year long stability survey. In particular we have monitored the a mount of both Gd and primary fluor actually in solution, the optical and fluorescent properties of the Gd-doped liquid scintillator (GdLS) and its performances as a neutron detector, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the target being continuously monitored. After two years from the doping time the performances of the Gd-doped liquid scintillator do not show any hint of degradation and instability; this conclusion comes both from the laboratory measurements and from the in-tank measurements. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period.
The detectors based on the liquid scintillator (LS) monitored by an array of photo-multiplier tubes (PMT) are often used in low energy experiments such as neutrino oscillation studies and search for dark matter. Detectors of this kind operate in an e nergy range spanning from hundreds of keV to a few GeV providing a few percent resolution at energies above 1 MeV and allowing to observe fine spectral features. This article gives a brief overview of relevant physical processes and introduces a new universal simulation tool LSMC (Liquid Scintillator Monte Carlo) for simulation of LS-based detectors equipped with PMT arrays. This tool is based on the Geant4 framework and provides supplementing functionality for ease of configuration and comprehensive output. The usage of LSMC is illustrated by modeling and optimization of a compact detector prototype currently being built at Baksan Neutrino Observatory.
Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give ri se to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا