ترغب بنشر مسار تعليمي؟ اضغط هنا

The optical implementation of the recently proposed unambiguous identification of coherent states is presented. Our system works as a programmable discriminator between two, in general non-orthogonal weak coherent states. The principle of operation l ies in the interference of three light beams - two program states and one unknown coherent state which can be equal to whichever of the two program states. The experiment is based on fiber optics. Its results confirm theoretical predictions and the experimental setup can be straightforwardly extended for higher numbers of program states.
We present a linear-optical implementation of a class of two-qubit partial SWAP gates for polarization states of photons. Different gate operations, including the SWAP and entangling square root of SWAP, can be obtained by changing a classical contro l parameter -- namely the path difference in the interferometer. Reconstruction of output states, full process tomography and evaluation of entanglement of formation prove very good performance of the gates.
We compare several optical implementations of phase-covariant cloning machines. The experiments are based on copying of the polarization state of a single photon in bulk optics by special unbalanced beam splitter or by balanced beam splitter accompan ied by a state filtering. Also the all-fiber based setup is discussed, where the information is encoded into spatial modes, i.e., the photon can propagate through two optical fibers. Each of the four implementations possesses some advantages and disadvantages that are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا