ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. Red supergiants are observed to undergo vigorous mass-loss. However, to date, no theoretical model has succeeded in explaining the origins of these objects winds. This strongly limits our understanding of red supergiant evolution and Type II -P and II-L supernova progenitor properties. Aims. We examine the role that vigorous atmospheric turbulence may play in initiating and determining the mass-loss rates of red supergiant stars. Methods. We analytically and numerically solve the equations of conservation of mass and momentum, which we later couple to an atmospheric temperature structure, to obtain theoretically motivated mass-loss rates. We then compare these to state-of-the-art empirical mass-loss rate scaling formulae as well as observationally inferred mass-loss rates of red supergiants. Results. We find that the pressure due to the characteristic turbulent velocities inferred for red supergiants is sufficient to explain the mass-loss rates of these objects in the absence of the normally employed opacity from circumstellar dust. Motivated by this initial success, we provide a first theoretical and fully analytic mass-loss rate prescription for red supergiants. We conclude by highlighting some intriguing possible implications of these rates for future studies of stellar evolution, especially in light of the lack of a direct dependence on metallicity.
Rotational transitions in vibrationally excited AlO and TiO -- two possible precursors of dust -- were observed in the 300 GHz range (1 mm wavelength) towards the oxygen rich AGB stars R Dor and IK Tau with ALMA, and vibrationally excited AlO was obs erved towards the red supergiant VY CMa with the SMA. The $J=11 to 10$ transition of TiO in the $v=1~{rm{and}}~2$ levels, and the $N = 9 to 8$ transition in the $v=2$ level of AlO were identified towards R Dor; the $J=11 to 10$ line of TiO was identified in the $v=1$ level towards IK Tau; and two transitions in the $v=1~{rm{and}}~2$ levels of AlO were identified towards VY CMa. The newly-derived high vibrational temperature of TiO and AlO in R Dor of $1800 pm 200$ K, and prior measurements of the angular extent confirm that the majority of the emission is from a region within $lesssim2R_{star}$ of the central star. A full radiative transfer analysis of AlO in R Dor yielded a fractional abundance of $sim$3% of the solar abundance of Al. From a similar analysis of TiO a fractional abundance of $sim78$% of the solar abundance of Ti was found. The observations provide indirect evidence that TiO is present in a rotating disk close to the star. Further observations in the ground and excited vibrational levels are needed to determine whether AlO, TiO, and TiO$_2$ are seeds of the Al$_2$O$_3$ dust in R Dor, and perhaps in the gravitationally bound dust shells in other AGB stars with low mass loss rates.
Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) cou ld be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.
In 1981, the idea of a superwind that ends the life of cool giant stars was proposed. Extreme OH/IR-stars develop superwinds with the highest mass-loss rates known so far, up to a few 10^(-4) Msun/yr, informing our understanding of the maximum mass-l oss rate achieved during the Asymptotic Giant Branch (AGB) phase. A condundrum arises whereby the observationally determined duration of the superwind phase is too short for these stars to become white dwarfs. Here, we report on the detection of spiral structures around two cornerstone extreme OH/IR-stars, OH26.5+0.6 and OH30.1-0.7, identifying them as wide binary systems. Hydrodynamical simulations show that the companions gravitational attraction creates an equatorial density enhancement mimicking a short extreme superwind phase, thereby solving the decades-old conundrum. This discovery restricts the maximum mass-loss rate of AGB stars around the single-scattering radiation-pressure limit of a few 10^(-5) Msun/yr. This brings about crucial implications for nucleosynthetic yields, planet survival, and the wind-driving mechanism.
Using ALMA, we observed the stellar wind of two oxygen-rich Asymptotic Giant Branch (AGB) stars, IK Tau and R Dor, between 335 and 362 GHz. One aim was to detect metal oxides and metal hydroxides (AlO, AlOH, FeO, MgO, MgOH), some of which are thought to be direct precursors of dust nucleation and growth. We report on the potential first detection of FeO (v=0, Omega=4, J=11-10) in RDor (mass-loss rate, Mdot, ~1e-7 Msun/yr). The presence of FeO in IK Tau (Mdot~5e-6 Msun/yr) cannot be confirmed due to a blend with 29SiS, a molecule that is absent in R Dor. The detection of AlO in R Dor and of AlOH in IK Tau was reported earlier by Decin et al. (2017). All other metal oxides and hydroxides, as well as MgS, remain undetected. We derive a column density N(FeO) of 1.1+/-0.9e15 cm^{-2} in R Dor, or a fractional abundance [FeO/H]~1.5e-8 accounting for non-LTE effects. The derived fractional abundance [FeO/H] is a factor ~20 larger than conventional gas-phase chemical kinetic predictions. This discrepancy may be partly accounted for by the role of vibrationally excited OH in oxidizing Fe, or may be evidence for other currently unrecognised chemical pathways producing FeO. Assuming a constant fractional abundance w.r.t. H_2, the upper limits for the other metals are [MgO/H_2] <5.5e-10 (R Dor) and <7e-11 (IK Tau), [MgOH/H_2] <9e-9 (R Dor) and <1e-9 (IK Tau), [CaO/H_2] <2.5e-9 (R Dor) and <1e-10 (IK Tau), [CaOH/H_2] <6.5e-9 (R Dor) and <9e-10 (IK Tau), and [MgS/H_$] <4.5e-10 (R Dor) and <6e-11 (IK Tau). The retrieved upper limit abundances for these latter molecules are in accord with the chemical model predictions.
A spectral line and imaging survey of the low mass-loss rate AGB star R Dor (Mdot ~ 1e-7 Msun/yr) and the high mass-loss rate AGB star IK Tau (Mdot ~5e-6 Msun/yr) was made with ALMA between 335 and 362 GHz at a spatial resolution of ~150 mas, corresp onding to the locus of the main dust formation region of both targets. Some 200 spectral features from 15 molecules (and their isotopologues) were observed, including rotational lines in both the ground and vibrationally excited states. Detected species include the gaseous precursors of dust grains such as SiO, AlO, AlOH, TiO, and TiO2. We present a spectral atlas for both stars and the parameters of all detected spectral features. A clear dichotomy for the sulphur chemistry is seen: while CS, SiS, SO, and SO2 are abundantly present in IK Tau, only SO and SO2 are detected in R Dor. Also other species such as NaCl, NS, AlO, and AlOH display a completely different behaviour. From some selected species, the minor isotopologues can be used to assess the isotopic ratios. The channel maps of many species prove that both large and small-scale inhomogeneities persist in the inner wind of both stars in the form of blobs, arcs, and/or a disk. The high sensitivity of ALMA allows us to spot the impact of these correlated density structures in the spectral line profiles. The spectral lines often display a half width at zero intensity much larger than expected from the terminal velocity, v_inf, previously derived for both objects (36 km/s versus v_inf ~17.7 km/s for IK Tau and 23 km/s versus v_inf ~5.5 km/s for R Dor). Both a more complex 3D morphology and a more forceful wind acceleration of the (underlying) isotropic wind can explain this trend. The formation of fractal grains in the region beyond ~400 mas can potentially account for the latter scenario. From the continuum map, we deduce a dust mass of ~3.7e-7 Msun for IK Tau and ~2e-8 Msun for R Dor.
(abridged) Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. We have analysed molecular transitions of CO, SiO, and HCN measured with the AP EX telescope and all three instruments on the Herschel Space Observatory, together with literature data. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We have performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the outflow probed by our molecular data. For SiO, we find that the initial abundance lies between $5.5 times 10^{-5}$ and $6.0 times 10^{-5}$ w.r.t. H$_2$. The abundance profile is constant up to $60 pm 10 R_*$, after which it declines following a Gaussian profile with an $e$-folding radius of $3.5 pm 0.5 times 10^{13}$ cm. For HCN, we find an initial abundance of $5.0 times 10^{-7}$ w.r.t. H$_2$. The Gaussian profile that describes the decline starts at the stellar surface and has an $e$-folding radius $r_e$ of $1.85 pm 0.05 times 10^{15}$ cm. We cannot to unambiguously identify the mechanism by which SiO is destroyed at $60 pm 10 R_*$. The initial abundances found are larger than previously determined (except for one previous study on SiO), which might be due to the inclusion of higher-$J$ transitions. The difference in abundance for SiO and HCN compared to high mass-loss rate Mira star IK Tau might be due to different pulsation characteristics of the central star and/or a difference in dust condensation physics.
(abbreviated) We aim to constrain the dust formation histories in the winds of oxygen-rich AGB stars. We have obtained ALMA observations with a spatial resolution of 120x150 mas tracing the dust formation region of a low mass-loss rate and a high mas s-loss rate AGB star, R Dor and IK Tau. Emission line profiles of AlO, AlOH and AlCl are detected and are used to derive a lower limit of atomic aluminium incorporated in molecules. We show that the gas-phase aluminium chemistry is completely different in both stars, with a remarkable difference in the AlO and AlOH abundance stratification. The amount of aluminium locked up in these 3 molecules is small, <=1.1e-7, for both stars, i.e. only <=2% of the total aluminium budget. This leaves ample of room for aluminium to be incorporated in grains. A fundamental result is that AlO and AlOH, being the direct precursors of alumina grains, are detected well beyond the onset of the dust condensation proving that the aluminium oxide condensation cycle is not fully efficient. The ALMA observations allow us to quantitatively assess the current generation of theoretical dynamical-chemical models for AGB winds. We discuss how the current proposed scenario of aluminium dust condensation for low mass-loss rate AGB stars at a distance of ~1.5 Rstar, in particular for the stars R Dor and W Hya, poses a challenge if one wishes to explain both the dust spectral features in the spectral energy distribution (SED), in interferometric data, and in polarized light signal. In particular, the estimated grain temperature of Al2O3 is too high for the grains to retain their amorphous structure. We propose that large gas-phase (Al2O3)n-clusters (n>34) can be the potential agents of the broad 11 micron feature in the SED and in the interferometric data and we explain how these large clusters can be formed.
Aluminium monoxide, AlO, is likely efficiently depleted from the gas around oxygen-rich evolved stars to form alumina clusters and dust seeds. Its presence in the extended atmospheres of evolved stars has been derived from optical spectroscopy. More recently, AlO gas was also detected at long wavelengths around the supergiant VY CMa and the oxygen-rich asymptotic giant branch (AGB) star o Cet (Mira A). In search of AlO, we mined data obtained with APEX, the IRAM 30m telescope, Herschel/HIFI, SMA, and ALMA, which were primarily aimed at studying other molecular species. We report here on observations of AlO towards a sample of eight oxygen-rich AGB stars in different rotational transitions, up to seven for some stars. We present definite detections of one rotational transition of AlO for o Cet and R Aqr, and tentative detections of one transition for R Dor and o Cet, and two for IK Tau and W Hya. The presented spectra of WX Psc, R Cas, and TX Cam show no signature of AlO. For o Cet, R Aqr, and IK Tau, we find that the AlO(N=9-8) emission likely traces the inner parts of the wind, out to only a few tens of AU, where the gas has not yet reached its terminal velocity. The conclusive detections of AlO emission in the case of o Cet and R Aqr confirm the presence of AlO gas in outflows of AGB stars. The tentative detections further support this. Since most of the observations presented in this study were obtained with stronger emission from other species than AlO in mind, observations with higher sensitivity in combination with high angular resolution will improve our understanding of the presence and behaviour of AlO. From the current data sets we cannot firmly conclude whether there is a direct correlation between the wind properties and the detection rate of AlO emission. We hope that this study can serve as a stimulus to perform sample studies in search of AlO in oxygen-rich outflows.
The aim of this paper is to investigate the $^{17}$O/$^{18}$O ratio for a sample of AGB stars, containing M-, S- and C-type stars. These ratios are evaluated in relation to fundamental stellar evolution parameters: the stellar initial mass and pulsat ion period. Circumstellar $^{13}$C$^{16}$O, $^{12}$C$^{17}$O and $^{12}$C$^{18}$O line observations were obtained for a sample of nine stars with various single-dish long-wavelength facilities. Line intensity ratios are shown to relate directly to the surface $^{17}$O/$^{18}$O abundance ratio. Stellar evolution models predict the $^{17}$O/$^{18}$O ratio to be a sensitive function of initial mass and to remain constant throughout the entire TP-AGB phase for stars initially less massive than 5,$M_{odot}$. This makes the measured ratio a probe of the initial stellar mass. Observed $^{17}$O/$^{18}$O ratios are found to be well in the range predicted by stellar evolution models that do not consider convective overshooting. From this, accurate initial mass estimates are calculated for seven sources. For the remaining two sources two mass solutions result, though with a larger probability that the low-mass solution is the correct one. Finally, hints at a possible separation between M/S- and C-type stars when comparing the $^{17}$O/$^{18}$O ratio to the stellar pulsation period are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا