ترغب بنشر مسار تعليمي؟ اضغط هنا

63 - Takeo Minezaki 2015
Recently, Gandhi, Honig, and Kishimoto submitted a manuscript to the arXiv e-print service on the location of the emitting region of the narrow FeK$alpha $ line that appears in the X-ray spectra of active galactic nuclei (AGNs) compared with the inne r radius of the dust torus (arXiv:1502.02661). Prior to their manuscript, a similar discussion had already been presented in a section of Minezaki & Matsushita (2015), which had been accepted for publication in the Astrophysical Journal. Because Gandhi et al. made no reference to Minezaki & Matsushita (2015) apart from improperly citing it merely as an application of the dust reverberation of AGNs, we present a brief comparison of both papers. Gandhi et al. compared the location of the FeK$alpha$ emitting region with the individually measured radius of the dust torus for type 1 AGNs, whereas Minezaki & Matsushita (2015) examined it based on the scaling relation of the dust reverberation radius for both type 1 and type 2 AGNs. Nevertheless, Gandhi et als main result is basically consistent with and supports the results of Minezaki & Matsushita (2015).
We have analyzed 17 early-type galaxies, 13 ellipticals and 4 S0s, observed with Suzaku, and investigated metal abundances (O, Mg, Si, and Fe) and abundance ratios (O/Fe, Mg/Fe, and Si/Fe) in the interstellar medium (ISM). The emission from each on-s ource region, which is 4 times effective radius, r_e, is reproduced with one- or two- temperature thermal plasma models as well as a multi-temperature model, using APEC plasma code v2.0.1. The multi-temperature model gave almost the same abundances and abundance ratios with the 1T or 2T models. The weighted averages of the O, Mg, Si, and Fe abundances of all the sample galaxies derived from the multi-temperature model fits are 0.83+-0.04, 0.93+-0.03, 0.80+-0.02, and 0.80+-0.02 solar, respectively, in solar units according to the solar abundance table by Lodders (2003). These abundances show no significant dependence on the morphology and environment. The systematic differences in the derived metal abundances between the version 2.0.1 and 1.3.1 of APEC plasma codes were investigated. The derived O and Mg abundances in the ISM agree with the stellar metallicity within a aperture with a radius of one r_e derived from optical spectroscopy. From these results, we discuss the past and present SN Ia rates and star formation histories in early-type galaxies.
We present results of four-pointing Suzaku X-ray observations (total ~200 ks) of the intracluster medium (ICM) in the Abell 1835 galaxy cluster (kT ~ 8 keV, z = 0.253) out to the virial radius (r_vir ~ 2.9 Mpc) and beyond. Faint X-ray emission from t he ICM out to r_vir is detected. The temperature gradually decreases with radius from ~8 keV in the inner region to ~2 keV at r_vir. The entropy profile is shown to flatten beyond r_500, in disagreement with the r_1.1 dependence predicted from the accretion shock heating model. The thermal pressure profile in the range 0.3r_500 < r < r_vir agrees well with that obtained from the stacked Sunyaev-Zeldovich effect observations with the Planck satellite. The hydrostatic mass profile in the cluster outskirts (r_500 < r < r_vir) falls well short of the weak lensing one derived from Subaru/Suprime-Cam observations, showing an unphysical decrease with radius. The gas mass fraction at r_vir defined with the lensing total mass agrees with the cosmic baryon fraction from the WMAP 7-year data. All these results indicate, rather than the gas-clumping effect, that the bulk of the ICM in the cluster outskirts is far from hydrostatic equilibrium and infalling matter retained some of its kinetic energy. Finally, combining with our recent Suzaku and lensing analysis of Abell 1689, a cluster of similar mass, temperature, and redshift, we show that the cluster temperature distribution in the outskirts is significantly correlated with the galaxy density field in the surrounding large-scale environment at (1-2)r_vir.
We performed spectral analysis of Suzaku data of the galactic disk and outflow regions of the starburst galaxy M82. Thermal modeling of the central disk regions requires at least three temperature components. The Ly$beta$ line fluxes of O VIII and Ne X exceed those expected from a plasma in collisional ionization equilibrium. The ratios of Ly$beta$/Ly$alpha$ lines for O VIII and Ne X are higher than those of collisional ionization equilibrium, which may be caused by the process of charge exchange. In the outflow wind region, the spectra are well reproduced with two-temperature thermal models, and we have derived the metal abundances of O, Ne, Mg, and Fe in the outflow. The ratios of O/Fe, Ne/Fe, and Mg/Fe are about 2, 3, and 2, respectively, relative to the solar value determined by Lodders (2003). Since there is no evidence of charge exchange in outflow region, the metal abundances should be more reliable than those in the central region. This abundance pattern indicates that starburst activity enriches the outflow through SN II metal ejection into intergalactic space.
Suzaku observed a central region and five offset regions within 0.2 r180 in the Fornax cluster, a nearby poor cluster, and XMM-Newton mapped the cluster with 15 pointings out to 0.3 r180. The distributions of O, Mg, Si, S, and Fe in the intracluster medium (ICM) were studied with Suzaku, and those of Fe and temperature were studied with XMM. The temperature of the ICM gradually decreases with radius from 1.3 keV at 0.04 r180 to 1 keV at 0.2-0.3 r180. If the new solar abundances of Lodders et al. (2003) and a single-temperature plasma model are adopted, O, Mg, Si, S, and Fe show similar abundances: 0.4-0.6 solar within 0.02-0.2 r180. This Fe abundance is similar to those at 0.1-0.2 r180 in rich clusters and other groups of galaxies. At 0.2-0.3 r180, the Fe abundance becomes 0.2-0.3 solar. A two-temperature plasma model yields ICM abundances that are higher by a factor of 1.2-1.5, but gives similar abundance ratios among O, Mg, Si, S, and Fe. The northern region has a lower ICM temperature and higher brightness and Fe abundance, whereas the southern region has a higher ICM temperature and lower brightness and Fe abundance. These results indicate that the cD galaxy may have traveled from the north because of recent dynamical evolution. The cumulative oxygen- and iron-mass-to-light ratios within 0.3 r180 are more than an order of magnitude lower than those of rich clusters and some relaxed groups of galaxies. Past dynamical evolution might have hindered the strong concentration of hot gas in the Fornax clusters central region. Scatter in the IMLR and similarity in the element abundances in the ICM of groups and clusters of galaxies indicate early metal synthesis.
The Suzaku X-ray satellite observed the nearby S0 galaxy NGC 1316, a merger remnant aged 3 Gyr. The total good exposure time was 48.7 ksec. The spectra were well represented by a two-temperature thermal model for the interstellar medium (ISM) plus a power-law model. The cool and hot temperatures of the thermal model were 0.48 +/- 0.03 and 0.92 +/- 0.04 keV, respectively. The excellent spectral sensitivity of Suzaku enables for the first time to measure the metal abundances of O, Ne, Mg, Si, and Fe in the ISM. The resultant abundance pattern of O, Ne, Mg, Si, and Fe is close to that of the new solar abundance determined by Lodders (2003). The measured abundance pattern is compared with those of elliptical galaxies and an S0 galaxy, observed with Suzaku. Considering the metal-enrichment from present Type Ia supernovae, the near-solar abundance pattern of the ISM in NGC~1316 indicates an enhanced {alpha}/Fe ratio of stellar materials in the entire galaxy, like in giant elliptical galaxies.
We derived O, Ne, and Mg abundances in the interstellar medium (ISM) of a relatively isolated S0 galaxy, NGC 4382, observed with the Suzaku XIS instruments and compared the O/Ne/Mg/Fe abundance pattern to those of the ISM in elliptical galaxies. The derived temperature and Fe abundance in the ISM are about 0.3 keV and 0.6--2.9 solar, respectively. The abundance ratios are derived with a better accuracy than the abundances themselves: O/Fe, Ne/Fe, and Mg/Fe ratios are 0.3, 0.7, and 0.6, respectively, in solar units. The O/Fe ratio is smaller than that of the ISM in elliptical galaxies, NGC 720, NGC 1399, NGC 1404, and NGC 4636, observed with Suzaku. Since O, Ne, and Mg are predominantly synthesized by supernovae (SNe) of type II, the observed abundance pattern indicates that the contribution of SN Ia products is higher in the S0 galaxy than in the elliptical galaxies Since the hot ISM in early-type galaxies is an accumulation of stellar mass and SN Ia products, the low O/Fe ratio in the ISM of NGC 4382 reflects a higher rate of present SNe Ia, or stars containing more SN Ia products than those in elliptical galaxies.
The Suzaku X-ray satellite observed the nearby spiral galaxy NGC 4258 for a total good exposure time of 100 ks. We present an analysis of the Suzaku XIS data, in which we confirm that the 0.5--2 keV spectra of the interstellar medium (ISM) are well-r epresented by a two-temperature model. The cool and hot ISM temperatures are 0.23+-0.02 and 0.59 +-0.01 keV, respectively. Suzakus excellent spectral sensitivity enables us to measure the metal abundances of O, Ne, Mg, Si and Fe of the ISM for the first time. The resultant abundance pattern of O, Mg, Si, and Fe is consistent with that of the new solar abundance table of Lodders (2003), rather than Anders & Grevesse (1989). This suggests that the metal enrichment processes of NGC 4258 and of our Galaxy are similar.
Temperature and abundance distributions of the intra-cluster medium (ICM) in the NGC 507 group of galaxies were studied with Suzaku. Observed concentric annular spectra were well-represented by a two temperature model for ICM, and we found steeper ab undance gradients for Mg, Si, S, and Fe compared with O in the central region. Abundance ratios of alpha-elements to iron were found to be similar to those in other groups and poor clusters. We calculated metal mass-to-light ratios for Fe, O and Mg (IMLR, OMLR, MMLR) for NGC 507, and values for different systems were compared. Hotter and richer systems tend to show higher values of IMLR, OMLR, and MMLR. OMLR and MMLR were measured to an outer region for the first time with Suzaku, while IMLR was consistent with that with ASCA. We also looked into 2-dimensional map of the hardness ratio, but found no significant deviation from the circular symmetry.
We carried out 3 observations of the cluster of galaxies AWM 7, for the central region and 20-east and 20-west offset regions, with Suzaku. Temperature and abundance profiles are measured out to 27~ 570 /h_70 kpc, which corresponded to ~0.35 r_180. T he temperature of the intra-cluster medium (ICM) slightly decreases from 3.8 keV at the center to 3.4 keV in ~0.35 r_180 region, indicating a flatter profile than those in other nearby clusters. Abundance ratio of Si to Fe is almost constant in our observation, while Mg to Fe ratio increases with radius from the cluster center. O to Fe ratio in the west region shows increase with radius, while that in the east region is almost flat, though the errors are relatively large. These features suggest that the enrichment process is significantly different between products of type II supernovae (O and Mg) and those by type Ia supernovae (Si and Fe). We also examined positional shift of the central energy of He-like Fe-Ka line, in search of possible rotation of the ICM. The 90% upper limit for the line-of-sight velocity difference was derived to be v ~ 2000 km/s, suggesting that the ellipticity of AWM 7 is rather caused by a recent directional infall of the gas along the large-scale filament.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا