ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku Metal Abundance Patterns in the Outflow Region of M82 and the Importance of Charge Exchange

98   0   0.0 ( 0 )
 نشر من قبل Saori Konami
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed spectral analysis of Suzaku data of the galactic disk and outflow regions of the starburst galaxy M82. Thermal modeling of the central disk regions requires at least three temperature components. The Ly$beta$ line fluxes of O VIII and Ne X exceed those expected from a plasma in collisional ionization equilibrium. The ratios of Ly$beta$/Ly$alpha$ lines for O VIII and Ne X are higher than those of collisional ionization equilibrium, which may be caused by the process of charge exchange. In the outflow wind region, the spectra are well reproduced with two-temperature thermal models, and we have derived the metal abundances of O, Ne, Mg, and Fe in the outflow. The ratios of O/Fe, Ne/Fe, and Mg/Fe are about 2, 3, and 2, respectively, relative to the solar value determined by Lodders (2003). Since there is no evidence of charge exchange in outflow region, the metal abundances should be more reliable than those in the central region. This abundance pattern indicates that starburst activity enriches the outflow through SN II metal ejection into intergalactic space.

قيم البحث

اقرأ أيضاً

117 - Piero Ranalli 2012
Charge-exchange (CE) emission produces features which are detectable with the current X-ray instrumentation in the brightest near galaxies. We describe these aspects in the observed X-ray spectra of the star forming galaxies M82 and NGC 3256, from th e Suzaku and XMM-Newton telescopes. Emission from both ions (O, C) and neutrals (Mg, Si) is recognised. We also describe how microcalorimeter instrumentation on future missions will improve CE observations.
We have analyzed 17 early-type galaxies, 13 ellipticals and 4 S0s, observed with Suzaku, and investigated metal abundances (O, Mg, Si, and Fe) and abundance ratios (O/Fe, Mg/Fe, and Si/Fe) in the interstellar medium (ISM). The emission from each on-s ource region, which is 4 times effective radius, r_e, is reproduced with one- or two- temperature thermal plasma models as well as a multi-temperature model, using APEC plasma code v2.0.1. The multi-temperature model gave almost the same abundances and abundance ratios with the 1T or 2T models. The weighted averages of the O, Mg, Si, and Fe abundances of all the sample galaxies derived from the multi-temperature model fits are 0.83+-0.04, 0.93+-0.03, 0.80+-0.02, and 0.80+-0.02 solar, respectively, in solar units according to the solar abundance table by Lodders (2003). These abundances show no significant dependence on the morphology and environment. The systematic differences in the derived metal abundances between the version 2.0.1 and 1.3.1 of APEC plasma codes were investigated. The derived O and Mg abundances in the ISM agree with the stellar metallicity within a aperture with a radius of one r_e derived from optical spectroscopy. From these results, we discuss the past and present SN Ia rates and star formation histories in early-type galaxies.
It has been proposed that the charge exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star forming galaxies. We analyze the XMM-Newton/RGS spectrum of M82, using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the K$alpha$ triplets of various He-like ions, but also good fractions of the Ly$alpha$ transitions of C VI (~87%), O VIII and N VII ($gtrsim$50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30 AA band originates in the CX. We infer an ion incident rate of $3times10^{51},rm{s^{-1}}$ undergoing CX at the hot and cool gas interface, and an effective area of the interface as $sim2times10^{45},{rm cm^2}$ that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribution accounted for, the best fit temperature of the hot gas is 0.6 keV, and the metal abundances are approximately solar. We further show that the same CX/thermal plasma model also gives an excellent description of the EPIC-pn spectrum of the outflow Cap, projected at 11.6 kpc away from the galactic disk of M82. This analysis demonstrates that the CX is potentially an important contributor to the X-ray emission from starburst galaxies and also an invaluable tool to probe the interface astrophysics.
Charge exchange (CX) emission reveals the significant interaction between neutral and ionized interstellar medium (ISM) components of the dense, multiphase, circumnuclear region of a galaxy. We use a model including a thermal and a CX components to d escribe the high-resolution XMM-Newton/RGS spectrum of the diffuse emission in the central region of M51. Representative signatures of CX emission -- especially the prominent OVII forbidden line and the excess emission in the OVIII Ly$gamma$ lines -- can be well explained by the model. Combined with the Chandra images in the OVIII and the OVII bands, we find the soft X-ray emission is dominated by the jet-driven outflow and its interaction with the ambient neutral material. The jet-driven outflow itself is likely a thermal plasma of $sim 0.59$ keV, with mostly sub-solar abundances. It runs into the ambient neutral gas, and produces significant CX emission that accounts for one-fifth of the diffuse X-ray emission in the 7--28 {AA} band. The effective interface area in the CX process is one order of magnitude greater than the geometrical surface area of the jet-driven outflow. The tenuous outflow driven by the nuclear star formation may also contribute a small portion to both the diffuse thermal and CX emission. The photoionization by the active galactic nuclei (AGNs) and the resonance scattering by the hot gas itself are disfavored, though the effects from past AGN events may not be ruled out.
The Suzaku X-ray satellite observed the nearby S0 galaxy NGC 1316, a merger remnant aged 3 Gyr. The total good exposure time was 48.7 ksec. The spectra were well represented by a two-temperature thermal model for the interstellar medium (ISM) plus a power-law model. The cool and hot temperatures of the thermal model were 0.48 +/- 0.03 and 0.92 +/- 0.04 keV, respectively. The excellent spectral sensitivity of Suzaku enables for the first time to measure the metal abundances of O, Ne, Mg, Si, and Fe in the ISM. The resultant abundance pattern of O, Ne, Mg, Si, and Fe is close to that of the new solar abundance determined by Lodders (2003). The measured abundance pattern is compared with those of elliptical galaxies and an S0 galaxy, observed with Suzaku. Considering the metal-enrichment from present Type Ia supernovae, the near-solar abundance pattern of the ISM in NGC~1316 indicates an enhanced {alpha}/Fe ratio of stellar materials in the entire galaxy, like in giant elliptical galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا