ترغب بنشر مسار تعليمي؟ اضغط هنا

Mobile Edge Caching is a promising technique to enhance the content delivery quality and reduce the backhaul link congestion, by storing popular content at the network edge or mobile devices (e.g. base stations and smartphones) that are proximate to content requesters. In this work, we study a novel mobile edge caching framework, which enables mobile devices to cache and share popular contents with each other via device-to-device (D2D) links. We are interested in the following incentive problem of mobile device users: whether and which users are willing to cache and share what contents, taking the user mobility and cost/reward into consideration. The problem is challenging in a large-scale network with a large number of users. We introduce the evolutionary game theory, an effective tool for analyzing large-scale dynamic systems, to analyze the mobile users content caching and sharing strategies. Specifically, we first derive the users best caching and sharing strategies, and then analyze how these best strategies change dynamically over time, based on which we further characterize the system equilibrium systematically. Simulation results show that the proposed caching scheme outperforms the existing schemes in terms of the total transmission cost and the cellular load. In particular, in our simulation, the total transmission cost can be reduced by 42.5%-55.2% and the cellular load can be reduced by 21.5%-56.4%.
Ultra-high-energy ($>$ 100 TeV) gamma-ray detection benefits from the muon detectors (MDs) due to the powerful capability to suppress the cosmic-ray background. More than 1100 8-inch photomultiplier tubes, CR365-02-2 from Beijing Hamamatsu Photon Tec hniques INC. (BHP), are deployed for the LHAASO-MD experiment. In this paper, the design of the photomultiplier base with a high dynamic range is presented. Signals are extracted from two outputs: the anode and the 7-th dynode. The design ensures a good single photoelectron resolution (peak-to-valley ratio $>$ 2) and a high dynamic range (equivalent anode peak current up to 1600 mA). The anode-to-dynode amplitude ratio is below 160 to ensure enough overlaps between the two outputs.
Squeezed light is a critical resource in quantum sensing and information processing. Due to the inherently weak optical nonlinearity and limited interaction volume, considerable pump power is typically needed to obtain efficient interactions to gener ate squeezed light in bulk crystals. Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide. For the construction of large-scale quantum systems performing many-photon operations, it is essential to integrate various functional modules on a chip. However, fabrication imperfections and transmission crosstalk may add unwanted diffraction and coupling to other photonic elements, reducing the quality of squeezing. Here, by introducing the topological phase, we experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip. We measure the cross-correlations at different evolution distances for various topological sites and verify the non-classical features with high fidelity. The squeezing parameters are measured to certify the protection of cavity-free, strongly squeezed states. The demonstration of topological protection for squeezed light on a chip brings new opportunities for quantum integrated photonics, opening novel approaches for the design of advanced multi-photon circuits.
66 - Xilin Feng , Yi Zhang , Kun Jiang 2021
Motivated by recent experiments on AV$_3$Sb$_5$ (A=K,Rb,Cs), the chiral flux phase has been proposed to explain time-reversal symmetry breaking. To fully understand the physics behind the chiral flux phase, we construct a low-energy effective theory based on the van-Hove points around the Fermi surface. The possible symmetry-breaking states and their classifications of the low-energy effective theory are completely studied, especially the flux phases on Kagome lattice. In addition, we discuss the relations between the low-energy symmetry breaking orders, the chiral flux and charge bond orders. We find all possible 183 flux phases on Kagome lattice within 2*2 unit cell by brute-force approach and classify them by point group symmetry. These results provide a full picture of the time-reversal symmetry breaking in Kagome lattices.
126 - Jie Yuan , Qihong Chen , Kun Jiang 2021
Dramatic evolution of properties with minute change in the doping level is a hallmark of the complex chemistry which governs cuprate superconductivity as manifested in the celebrated superconducting domes as well as quantum criticality taking place a t precise compositions. The strange metal state, where the resistivity varies linearly with temperature, has emerged as a central feature in the normal state of cuprate superconductors. The ubiquity of this behavior signals an intimate link between the scattering mechanism and superconductivity. However, a clear quantitative picture of the correlation has been lacking. Here, we report observation of quantitative scaling laws between the superconducting transition temperature $T_{rm c}$ and the scattering rate associated with the strange metal state in electron-doped cuprate $rm La_{2-x}Ce_xCuO_4$ (LCCO) as a precise function of the doping level. High-resolution characterization of epitaxial composition-spread films, which encompass the entire overdoped range of LCCO has allowed us to systematically map its structural and transport properties with unprecedented accuracy and increment of $Delta x = 0.0015$. We have uncovered the relations $T_{rm c}sim(x_{rm c}-x)^{0.5}sim(A_1^square)^{0.5}$, where $x_c$ is the critical doping where superconductivity disappears on the overdoped side and $A_1^square$ is the scattering rate of perfect $T$-linear resistivity per CuO$_2$ plane. We argue that the striking similarity of the $T_{rm c}$ vs $A_1^square$ relation among cuprates, iron-based and organic superconductors is an indication of a common mechanism of the strange metal behavior and unconventional superconductivity in these systems.
We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV$_3$Sb$_5$ is a chiral flux phase. Considering the symmetry of the Kagome lattice, we show that the chiral flux phase has the lowest energy among those st ates which exhibit $2times2$ charge orders observed experimentally. This state breaks the time-reversal symmetry and displays anomalous Hall effect. The explicit pattern of the density of this state in real space is calculated. These results are supported by recent experiments and suggest that these materials are a new platform to investigate the interplay between topology, superconductivity and electron-electron correlations.
134 - Kun Jiang , Zebo Tang , Xin Li 2020
The Large High-Altitude Air Shower Observatory (LHAASO) is being built at Haizi Mountain, Sichuan province of China at an altitude of 4410 meters. One of its main goals is to survey the northern sky for very-high-energy gamma ray sources via its grou nd-based water Cherenkov detector array (WCDA). 900 8-inch photomultiplier tubes (PMTs) CR365-02-1 from Beijing Hamamatsu Photon Techniques INC. (BHP) are installed in the WCDA, collecting Cherenkov photons produced by air shower particles crossing water. The design of the PMT base with a high dynamic range for CR365-02-1, the PMT batch test system, and the test results of 997 PMTs are presented in this paper.
82 - Yuhao Gu , Xianxin Wu , Kun Jiang 2020
We show that the layered-structure BaCuS$_2$ is a moderately correlated electron system in which the electronic structure of the CuS layer bears a resemblance to those in both cuprates and iron-based superconductors. Theoretical calculations reveal t hat the in-plane $d$-$p$ $sigma^*$-bonding bands are isolated near the Fermi level. As the energy separation between the $d$ and $p$ orbitals are much smaller than those in cuprates and iron-based superconductors, BaCuS$_2$ is expected to be moderately correlated. We suggest that this material is an ideal system to study the competitive/collaborative nature between two distinct superconducting pairing mechanisms, namely the conventional BCS electron-phonon interaction and the electron-electron correlation, which may be helpful to establish the elusive mechanism of unconventional high-temperature superconductivity.
This paper explores the data cleaning challenges that arise in using WiFi connectivity data to locate users to semantic indoor locations such as buildings, regions, rooms. WiFi connectivity data consists of sporadic connections between devices and ne arby WiFi access points (APs), each of which may cover a relatively large area within a building. Our system, entitled semantic LOCATion cleanER (LOCATER), postulates semantic localization as a series of data cleaning tasks - first, it treats the problem of determining the AP to which a device is connected between any two of its connection events as a missing value detection and repair problem. It then associates the device with the semantic subregion (e.g., a conference room in the region) by postulating it as a location disambiguation problem. LOCATER uses a bootstrapping semi-supervised learning method for coarse localization and a probabilistic method to achieve finer localization. The paper shows that LOCATER can achieve significantly high accuracy at both the coarse and fine levels.
Topological superconductors (TSCs) are correlated quantum states with simultaneous off-diagonal long-range order and nontrivial topological invariants. They produce gapless or zero energy boundary excitations, including Majorana zero modes and chiral Majorana edge states with topologically protected phase coherence essential for fault-tolerant quantum computing. Candidate TSCs are very rare in nature. Here, we propose a novel route toward emergent quasi-one-dimensional (1D) TSCs in naturally embedded quantum structures such as atomic line defects in unconventional spin-singlet $s$-wave and $d$-wave superconductors. We show that inversion symmetry breaking and charge transfer due to the missing atoms lead to the occupation of incipient impurity bands and mixed parity spin singlet and triplet Cooper pairing of neighboring electrons traversing the line defect. Nontrivial topological invariants arise and occupy a large part of the parameter space, including the time reversal symmetry breaking Zeeman coupling due to applied magnetic field or defect-induced magnetism, creating TSCs in different topological classes with robust Majorana zero modes at both ends of the line defect. Beyond providing a novel mechanism for the recent discovery of zero-energy bound states at both ends of an atomic line defect in monolayer Fe(Te,Se) superconductors, the findings pave the way for new material realizations of the simplest and most robust 1D TSCs using embedded quantum structures in unconventional superconductors with large pairing energy gaps and high transition temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا