ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy loss in anisotropic hot dense QGP in external magnetic field is studied within holographic approach. Energy loss is calculated by estimation of behaviour of the spatial Wilson loops using the effective potential technique. We examine the depen dence of the effective potential on the spatial Wilson loops orientation in fully anisotropic background. For this purpose we obtain general formulas for the effective potential and study appearance of the effective potential dynamical wall. We consider particular fully anisotropic model [arXiv:2011.07023] supported by Einstein-Dilaton-three-Maxwell action. The effective potential strongly depends on the parameters of anisotropy and magnetic field, therefore the energy loss depends on physical parameters $-$ $T$, $mu$, $c_B$ and orientation. Orientation is determined by angles between the moving heavy quark velocity, the axis of heavy ions collision and their impact parameter vector.
We present a five-dimensional fully anisotropic holographic model for heavy quarks supported by Einstein-dilaton-three-Maxwell action; one of the Maxwell fields is related to an external magnetic field. Influence of the external magnetic field on the 5-dim black hole solution and the confinement/deconfinement phase diagram is considered. The effect of the inverse magnetic catalyses is revealed and positions of critical end points are found.
We present a five-dimensional anisotropic holographic model for light quarks supported by Einstein-dilaton-two-Maxwell action. This model generalizing isotropic holographic model with light quarks is characterized by a Van der Waals-like phase transi tion between small and large black holes. We compare the location of the phase transition for Wilson loops with the positions of the phase transition related to the background instability and describe the QCD phase diagram in the thermodynamic plane -- temperature $T$ and chemical potential $mu$. The Cornell potential behavior in this anisotropic model is also studied. The asymptotics of the Cornell potential at large distances strongly depend on the parameter of anisotropy and orientation. There is also a nontrivial dependence of the Cornell potential on the boundary conditions of the dilaton field and parameter of anisotropy. With the help of the boundary conditions for the dilaton field one fits the results of the lattice calculations for the string tension as a function of temperature in isotropic case and then generalize to the anisotropic one.
We study the T-{mu} phase diagram of anisotropic media, created in heavy-ion collisions (HIC). Such a statement of the problem is due to several indications that this media is anisotropic just after HIC. To study T-{mu} phase diagram we use holograph ic methods. To take into account the anisotropy we use an anisotropic black brane solutions for a bottom-up QCD approach in 5-dim Einstein-dilaton-two-Maxwell model constructed in our previous work. We calculate the minimal surfaces of the corresponding probing open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. The dynamical wall (DW) locations, providing the quark confinement, depend on the orientation of the quark pairs, that gives a crossover transition between confinement/deconfinement phases in the dual gauge theory.
We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-Maxwell system. The anisotropic background is specified by an arbitrary dynamical exponent $ u$, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component of the first Maxwell field and a non-zero longitudinal magnetic component of the second Maxwell field. The blackening function supports the Van der Waals-like phase transition between small and large black holes for a suitable first Maxwell field charge. The isotropic case corresponding to $ u = 1$ and zero magnetic field reproduces previously known solutions. We investigate the anisotropy influence on the thermodynamic properties of our background, in particular, on the small/large black holes phase transition diagram. We discuss applications of the model to the bottom-up holographic QCD. The RG flow interpolates between the UV section with two suppressed transversal coordinates and the IR section with the suppressed time and longitudinal coordinates due to anisotropic character of our solution. We study the temporal Wilson loops, extended in longitudinal and transversal directions, by calculating the minimal surfaces of the corresponding probing open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. We find that dynamical wall locations depend on the orientation of the quark pairs, that gives a crossover transition line between confinement/deconfinement phases in the dual gauge theory. Instability of the background leads to the appearance of the critical points $(mu_{vartheta,b}, T_{vartheta,b})$ depending on the orientation $vartheta$ of quark-antiquark pairs in respect to the heavy ions collision line.
The purpose of this study is to investigate observational features of Brans-Dicke wormholes in a case if they exist in our Universe. The energy flux from accretion onto a Brans-Dicke wormhole and the so-called maximum impact parameter are studied (th e last one might allow to observe light sources through a wormhole throat). The computed values were compared with the corresponding ones for GR-wormholes and Schwarzschild black holes. We shown that Brans-Dicke wormholes are quasi-Schwarzschild objects and should differ from GR wormholes by about one order of magnitude in the accretion energy flux.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا