ﻻ يوجد ملخص باللغة العربية
The purpose of this study is to investigate observational features of Brans-Dicke wormholes in a case if they exist in our Universe. The energy flux from accretion onto a Brans-Dicke wormhole and the so-called maximum impact parameter are studied (the last one might allow to observe light sources through a wormhole throat). The computed values were compared with the corresponding ones for GR-wormholes and Schwarzschild black holes. We shown that Brans-Dicke wormholes are quasi-Schwarzschild objects and should differ from GR wormholes by about one order of magnitude in the accretion energy flux.
In the context of generalised Brans-Dicke cosmology we use the Killing tensors of the minisuperspace in order to determine the unspecified potential of a scalar-tensor gravity theory. Specifically, based on the existence of contact symmetries of the
Since the evidence for an accelerated universe and the gap of 70% in the total energy, collected by WMAP, search for alternatives for the general relativity is an important issue, for this theory is not suited for these new phenomena. A particular al
We present an explicit detailed theoretical and observational investigation of an anisotropic massive Brans-Dicke (BD) gravity extension of the standard $Lambda$CDM model, wherein the extension is characterized by two additional degrees of freedom; t
When Brans-Dicke Theory is formulated in terms of the Jordan scalar field phi, dark energy is related to the mass of this field. We show that if phi is taken to be a complex scalar field then an exact solution of the vacuum equations shows that Fried
The effective vacuum energy density contributed by the non-trivial contortion distribution and the bare vacuum energy density can be viewed as the energy density of the auxiliary quintessence field potential. We find that the negative bare vacuum ene