ترغب بنشر مسار تعليمي؟ اضغط هنا

We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implications of our results for a quark that is moving through the plasma in a straight line while decelerating, although in this case the classical calculation breaks down at the same value of the deceleration at which the radiation-dominated regime sets in.
We investigate the robustness with respect to nonconformality of five properties of strongly coupled plasmas that have been calculated in N=4 supersymmetric Yang-Mills (SYM) theory at nonzero temperature, motivated by the goal of understanding phenom ena in heavy ion collisions. (The properties are the jet quenching parameter, the velocity dependence of screening, and the drag and transverse and longitudinal momentum diffusion coefficients for a heavy quark pulled through the plasma.) We use a toy model in which nonconformality is introduced via a one-parameter deformation of the AdS black hole dual to the hot N=4 SYM plasma. Upon introducing a degree of nonconformality comparable to that seen in lattice calculations of QCD at temperatures a few times that of the crossover to quark-gluon plasma, we find that the jet quenching parameter is affected by the nonconformality by at most 30%, the screening length is affected by at most 20%, but the drag and diffusion coefficients for a slowly moving heavy quark can be modified by as much as 80%. However, four of the five properties that we investigate become completely insensitive to the nonconformality in the limit v -> 1. The exception is the jet quenching parameter, which is infrared sensitive even at v=1, where it is defined. It is the only high-velocity observable that we investigate which is sensitive to properties of the medium at infrared energy scales proportional to T, namely the scales where the quark-gluon plasma of QCD can be strongly coupled. The other four quantities all probe only scales that are larger than T by a factor that diverges as v -> 1, namely scales where the N=4 SYM plasma can be strongly coupled but the quark-gluon plasma of QCD is not.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا