ترغب بنشر مسار تعليمي؟ اضغط هنا

Eta Carinaes spectroscopic events (periastron passages) in 2003, 2009, and 2014 differed progressively. He II 4687 and nearby N II multiplet 5 have special significance because they respond to very soft X-rays and the ionizing UV radiation field (EUV ). HST/STIS observations in 2014 show dramatic increases in both features compared to the previous 2009.1 event. These results appear very consistent with a progressive decline in the primary wind density, proposed years ago on other grounds. If material falls onto the companion star near periastron, the accretion rate may now have become too low to suppress the EUV
SN2011ht has been described both as a true supernova and as an impostor. In this paper, we conclude that it does not match some basic expectations for a core-collapse event. We discuss SN2011hts spectral evolution from a hot dense wind to a cool dens e wind, followed by the post-plateau appearance of a faster low density wind during a rapid decline in luminosity. We identify a slow dense wind expanding at only 500--600 km/s, present throughout the eruption. A faster wind speed V ~ 900 km/s may be identified with a second phase of the outburst. There is no direct or significant evidence for any flow speed above 1000 km/s; the broad asymmetric wings of Balmer emission lines in the hot wind phase were due to Thomson scattering, not bulk motion. We estimate a mass loss rate of order 0.04 Msun/yr during the hot dense wind phase of the event. There is no evidence that the kinetic energy substantially exceeded the luminous energy, roughly 2 X 10^49 ergs; so the total energy was far less than a true SN. We suggest that SN2011ht was a giant eruption driven by super-Eddington radiation pressure, perhaps beginning about 6 months before the discovery. A strongly non-spherical SN might also account for the data, at the cost of more free parameters.
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo s pectrum of that event, Rest et al.2 conclude that a new physical mechanism is required to explain it, because the gas outflow appears cooler than theoretical expectations. Here we note that (1) theory predicted a substantially lower temperature than they quoted, and (2) their inferred observational value is quite uncertain. Therefore, analyses so far do not reveal any significant contradiction between the observed spectrum and most previous discussions of the Great Eruption and its physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا