ترغب بنشر مسار تعليمي؟ اضغط هنا

We present 0.8-mm band molecular images and spectra obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) toward one of the nearest galaxies with an active galactic nucleus (AGN), NGC 1068. Distributions of CO isotopic species ($^{13} $CO and C$^{18}$O) $it{J}$ = 3--2, CN $it{N}$ = 3--2 and CS $it{J}$ = 7--6 are observed toward the circumnuclear disk (CND) and a part of the starburst ring with an angular resolution of $sim$1.$^{primeprime}$3 $times$ 1.$^{primeprime}$2. The physical properties of these molecules and shock-related molecules such as HNCO, CH$_{3}$CN, SO, and CH$_{3}$OH detected in the 3-mm band were estimated using rotation diagrams under the assumption of local thermodynamic equilibrium. The rotational temperatures of the CO isotopic species and the shock-related molecules in the CND are, respectively, 14--22 K and upper limits of 20--40 K. Although the column densities of the CO isotopic species in the CND are only from one-fifth to one-third of that in the starburst ring, those of the shock-related molecules are enhanced by a factor of 3--10 in the CND. We also discuss the chemistry of each species, and compare the fractional abundances in the CND and starburst ring with those of Galactic sources such as cold cores, hot cores, and shocked molecular clouds in order to study the overall characteristics. We find that the abundances of shock-related molecules are more similar to abundances in hot cores and/or shocked clouds than to cold cores. The CND hosts relatively complex molecules, which are often associated with shocked molecular clouds or hot cores. Because a high X-ray flux can dissociate these molecules, they must also reside in regions shielded from X-rays.
Sensitive observations with ALMA allow astronomers to observe the detailed distributions of molecules with relatively weak intensity in nearby galaxies. In particular, we report distributions of several molecular transitions including shock and dust related species ($^{13}$CO $J$ = 1--0, C$^{18}$O $J$ = 1--0, $^{13}$CN $N$ = 1--0, CS $J$ = 2--1, SO $J_N$ = 3$_2$--2$_1$, HNCO $J_{Ka,Kc}$ = 5$_{0,5}$--4$_{0,4}$, HC$_3$N $J$ = 11--10, 12--11, CH$_3$OH $J_K$ = 2$_K$--1$_K$, and CH$_3$CN $J_K$ = 6$_K$--5$_K$) in the nearby Seyfert 2 galaxy NGC 1068 observed with the ALMA early science program. The central $sim$1 arcmin ($sim$4.3 kpc) of this galaxy was observed in the 100 GHz region covering $sim$96--100 GHz and $sim$108--111 GHz with an angular resolution of $sim4times2$ (290 pc$times$140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. Here, we present images and report a classification of molecular distributions into three main categories: (1) Molecules concentrated in the circumnuclear disk (CND) (SO $J_N$ = 3$_2$--2$_1$, HC$_3$N $J$ = 11--10, 12--11, and CH$_3$CN $J_K$ = 6$_K$--5$_K$), (2) Molecules distributed both in the CND and the starburst ring (CS $J$ = 2--1 and CH$_3$OH $J_K$ = 2$_K$--1$_K$), (3) Molecules distributed mainly in the starburst ring ($^{13}$CO $J$ = 1--0 and C$^{18}$O $J$ = 1--0). Since most of the molecules such as HC$_3$N observed in the CND are easily dissociated by UV photons and X-rays, our results indicate that these molecules must be effectively shielded. In the starburst ring, the relative intensity of methanol at each clumpy region is not consistent with those of $^{13}$CO, C$^{18}$O, and CS. This difference is probably caused by the unique formation and destruction mechanisms of CH$_3$OH.
We present the first 100 pc scale view of the dense molecular gas in the central ~ 1.3 kpc region of the type-1 Seyfert NGC 1097 traced by HCN (J=4-3) and HCO+ (J=4-3) lines afforded with ALMA band 7. This galaxy shows significant HCN enhancement wit h respect to HCO+ and CO in the low-J transitions, which seems to be a common characteristic in AGN environments. Using the ALMA data, we study the characteristics of the dense gas around this AGN and search for the mechanism of HCN enhancement. We find a high HCN (J=4-3) to HCO+ (J=4-3) line ratio in the nucleus. The upper limit of the brightness temperature ratio of HCN (v2=1^{1f}, J=4-3) to HCN (J=4-3) is 0.08, which indicates that IR pumping does not significantly affect the pure rotational population in this nucleus. We also find a higher HCN (J=4-3) to CS (J=7-6) line ratio in NGC 1097 than in starburst galaxies, which is more than 12.7 on the brightness temperature scale. Combined from similar observations from other galaxies, we tentatively suggest that this ratio appears to be higher in AGN-host galaxies than in pure starburst ones similar to the widely used HCN to HCO+ ratio. LTE and non-LTE modeling of the observed HCN and HCO+ lines using J=4-3 and 1-0 data from ALMA, and J=3-2 data from SMA, reveals a high HCN to HCO+ abundance ratio (5 < [HCN]/[HCO+] < 20: non-LTE analysis) in the nucleus, and that the high-J lines (J=4-3 and 3-2) are emitted from dense (10^{4.5} < n_H2 [/cc] < 10^6), hot (70 < Tkin [K] < 550) regions. Finally we propose that the high temperature chemistry is more plausible to explain the observed enhanced HCN emission in NGC 1097 than the pure gas phase PDR/XDR chemistry.
We present a kinematic analysis of the dense molecular gas in the central 200 parsecs of the nearby galaxy NGC1097, based on Cycle 0 observations with the Atacama Large Millimeter/sub-millimeter Array (ALMA). We use the HCN(4-3) line to trace the den sest interstellar molecular gas, and quantify its kinematics, and estimate an inflow rate for the molecular gas. We find a striking similarity between the ALMA kinematic data and the analytic spiral inflow model that we have previously constructed based on ionized gas velocity fields on larger scales. We are able to follow dense gas streaming down to 40 pc distance from the supermassive black hole in this Seyfert 1 galaxy. In order to fulfill marginal stability, we deduce that the dense gas is confined to a very thin disc, and we derive a dense gas inflow rate of 0.09 Msun/yr at 40 pc radius. Combined with previous values from the Ha and CO gas, we calculate a combined molecular and ionized gas inflow rate of 0.2 Msun/yr at 40 pc distance from the central supermassive black hole of NGC1097.
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 1 00 GHz and archival data from the Very Large Array (VLA) at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz (a spectral index of ~0.3) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds (bulk Lorentz factors of >~ 3) of jet and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.
We present a Giant Molecular Cloud (GMC) catalog toward M33, containing 71 GMCs in total, based on wide field and high sensitivity CO(J=3-2) observations with a spatial resolution of 100 pc using the ASTE 10 m telescope. Employing archival optical da ta, we identify 75 young stellar groups (YSGs) from the excess of the surface stellar density, and estimate their ages by comparing with stellar evolution models. A spatial comparison among the GMCs, YSGs, and HII regions enable us to classify GMCs into four categories: Type A showing no sign of massive star formation (SF), Type B being associated only with HII regions, Type C with both HII regions and <10 Myr-old YSGs and Type-D with both HII regions and 10--30 Myr YSGs. Out of 65 GMCs (discarding those at the edges of the observed fields), 1 (1%), 13 (20%), 29 (45%), and 22 (34%) are Types A, B, C, and D, respectively. We interpret these categories as stages in a GMC evolutionary sequence. Assuming that the timescale for each evolutionary stage is proportional to the number of GMCs, the lifetime of a GMC with a mass >10^5 Mo is estimated to be 20--40 Myr. In addition, we find that the dense gas fraction as traced by the CO(J=3-2)/CO(J=1-0) ratio is enhanced around SF regions. This confirms a scenario where dense gas is preferentially formed around previously generated stars, and will be the fuel for the next stellar generation. In this way, massive SF gradually propagates in a GMC until gas is exhausted.
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum emission at the galactic center. Quasi-simultaneous multi-frequency observations using the Very Large Array (VLA) from 5 GHz (6 cm) to 22 GHz (1.3 cm) showe d inverted spectra in all epochs, which were intra-month variable, as well as complicated spectral features that cannot be represented by a simple power law, indicating multiple blobs in nuclear jets. Using the Nobeyama Millimeter Array (NMA), we discovered a large amplitude variable emission at 100 GHz (3 mm), which had higher flux densities at most epochs than those of the VLA observations. A James Clerk Maxwell Telescope (JCMT) observation at 347 GHz (850 micron) served an upper limit of dust contamination. The inverted radio spectrum of the nucleus NGC 4258 is suggestive of an analogy to our Galactic center Sgr A*, but with three orders of magnitude higher radio luminosity. In addition to the LLAGN M 81, we discuss the nucleus of NGC 4258 as another up-scaled version of Sgr A*.
We used the Nobeyama 45-m telescope to conduct a spectral line survey in the 3-mm band (85.1-98.4 GHz) toward one of the nearest galaxies with active galactic nucleus NGC 1068 and the prototypical starburst galaxy NGC 253. The beam size of this teles cope is ~18, which was sufficient to spatially separate the nuclear molecular emission from the emission of the circumnuclear starburst region in NGC 1068. We detected rotational transitions of C2H, cyclic-C3H2, and H13CN in NGC 1068. These are detections of carbon-chain and carbon-ring molecules in NGC 1068. In addition, the C2H N = 1-0 lines were detected in NGC 253. The column densities of C2H were determined to be 3.4 x 10^15 cm^-2 in NGC 1068 and 1.8 x 10^15 cm^-2 in NGC 253. The column densities of cyclic-C3H2 were determined to be 1.7 x 10^13 cm^-2 in NGC 1068 and 4.4 x 10^13 cm^-2 in NGC 253. We calculated the abundances of these molecules relative to CS for both NGC 1068 and NGC 253, and found that there were no significant differences in the abundances between the two galaxies. This result suggests that the basic carbon-containing molecules are either insusceptible to AGN, or are tracing cold (T_rot ~10 K) molecular gas rather than X-ray irradiated hot gas.
The Millimeter Sky Transparency Imager (MiSTI) is a small millimeter-wave scanning telescope with a 25-cm diameter dish operating at 183 GHz. MiSTI is installed at Atacama, Chile, and it measures emission from atmospheric water vapor and its fluctuat ions to estimate atmospheric absorption in the millimeter to submillimeter. MiSTI observes the water vapor distribution at a spatial resolution of 0.5 deg, and it is sensitive enough to detect an excess path length of <~ 0.05 mm for an integration time of 1 s. By comparing the MiSTI measurements with those by a 220 GHz tipper, we validate that the 183 GHz measurements of MiSTI are correct, down to the level of any residual systematic errors in the 220 GHz measurements. Since 2008, MiSTI has provided real-time (every 1 hr) monitoring of the all-sky opacity distribution and atmospheric transmission curves in the (sub)millimeter through the internet, allowing to know the (sub)millimeter sky conditions at Atacama.
We performed 12CO(1-0), 13CO(1-0), and HCN(1-0) single-dish observations (beam size ~14-18) toward nearby starburst and non-starburst galaxies using the Nobeyama 45 m telescope. The 13CO(1-0) and HCN(1-0) emissions were detected from all the seven st arburst galaxies, with the intensities of both lines being similar (i.e., the ratios are around unity). On the other hand, for case of the non-starburst galaxies, the 13CO(1-0) emission was detected from all three galaxies, while the HCN(1-0) emission was weakly or not detected in past observations. This result indicates that the HCN/13CO intensity ratios are significantly larger (~1.15+-0.32) in the starburst galaxy samples than the non-starburst galaxy samples (<0.31+-0.14). The large-velocity-gradient model suggests that the molecular gas in the starburst galaxies have warmer and denser conditions than that in the non-starburst galaxies, and the photon-dominated-region model suggests that the denser molecular gas is irradiated by stronger interstellar radiation field in the starburst galaxies than that in the non-starburst galaxies. In addition, HCN/13CO in our sample galaxies exhibit strong correlations with the IRAS 25 micron flux ratios. It is a well established fact that there exists a strong correlation between dense molecular gas and star formation activities, but our results suggest that molecular gas temperature is also an important parameter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا