ترغب بنشر مسار تعليمي؟ اضغط هنا

The fundamental quantum interferometry bound limits the sensitivity of an interferometer for a given total rate of photons and for a given decoherence rate inside the measurement device.We theoretically show that the recently reported quantum-noise l imited sensitivity of the squeezed-light-enhanced gravitational-wave detector GEO600 is exceedingly close to this bound, given the present amount of optical loss. Furthermore, our result proves that the employed combination of a bright coherent state and a squeezed vacuum state is generally the optimum practical approach for phase estimation with high precision on absolute scales. Based on our analysis we conclude that neither the application of Fock states nor N00N states or any other sophisticated nonclassical quantum states would have yielded an appreciably higher quantum-noise limited sensitivity.
We employed an electrically-driven polarization controller to implement anisotropic depolarizing quantum channels for the polarization state of single photons. The channels were characterized by means of ancilla-assisted quantum process tomography us ing polarization-entangled photons generated in the process of spontaneous parametric down-conversion. The demonstrated depolarization method offers good repeatability, low cost, and compatibility with fiber-optic setups. It does not perturb the modal structure of single photons, and therefore can be used to verify experimentally protocols for managing decoherence effects based on multiphoton interference.
We introduce a novel measure to quantify the non-Gaussian character of a quantum state: the quantum relative entropy between the state under examination and a reference Gaussian state. We analyze in details the properties of our measure and illustrat e its relationships with relevant quantities in quantum information as the Holevo bound and the conditional entropy; in particular a necessary condition for the Gaussian character of a quantum channel is also derived. The evolution of non-Gaussianity (nonG) is analyzedfor quantum states undergoing conditional Gaussification towards twin-beam and de-Gaussification driven by Kerr interaction. Our analysis allows to assess nonG as a resource for quantum information and, in turn, to evaluate the performances of Gaussification and de-Gaussification protocols.
We discuss characterization of single-photon wave packets by measuring Hong-Ou-Mandel interference with a weak coherent pulse. A complete multimode calculation is presented and effects of multiphoton terms in the coherent field as well as the impact of source and detection imperfections are discussed.
We present a method for a complete characterization of a femtosecond ultraviolet pulse when a fundamental near-infrared beam is also available. Our approach relies on generation of second harmonic from the pre-characterized fundamental, which serves as a reference against which an unknown pulse is measured using spectral interference (SI). The characterization apparatus is a modified second harmonic frequency resolved optical gating setup which additionally allows for taking SI spectrum. The presented method is linear in the unknown field, simple and sensitive. We checked its accuracy using test pulses generated in a thick nonlinear crystal, demonstrating the ability to measure the phase in a broad spectral range, down to 0.1% peak spectral intensity as well as retrieving pi leaps in the spectral phase.
We address the issue of quantifying the non-Gaussian character of a bosonic quantum state and introduce a non-Gaussianity measure based on the Hilbert-Schmidt distance between the state under examination and a reference Gaussian state. We analyze in details the properties of the proposed measure and exploit it to evaluate the non-Gaussianity of some relevant single- and multi-mode quantum states. The evolution of non-Gaussianity is also analyzed for quantum states undergoing the processes of Gaussification by loss and de-Gaussification by photon-subtraction. The suggested measure is easily computable for any state of a bosonic system and allows to define a corresponding measure for the non-Gaussian character of a quantum operation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا