ﻻ يوجد ملخص باللغة العربية
We introduce a novel measure to quantify the non-Gaussian character of a quantum state: the quantum relative entropy between the state under examination and a reference Gaussian state. We analyze in details the properties of our measure and illustrate its relationships with relevant quantities in quantum information as the Holevo bound and the conditional entropy; in particular a necessary condition for the Gaussian character of a quantum channel is also derived. The evolution of non-Gaussianity (nonG) is analyzedfor quantum states undergoing conditional Gaussification towards twin-beam and de-Gaussification driven by Kerr interaction. Our analysis allows to assess nonG as a resource for quantum information and, in turn, to evaluate the performances of Gaussification and de-Gaussification protocols.
We address the issue of quantifying the non-Gaussian character of a bosonic quantum state and introduce a non-Gaussianity measure based on the Hilbert-Schmidt distance between the state under examination and a reference Gaussian state. We analyze in
We introduce a measure of quantum non-Gaussianity (QNG) for those quantum states not accessible by a mixture of Gaussian states in terms of quantum relative entropy. Specifically, we employ a convex-roof extension using all possible mixed-state decom
We consider how to quantify non-Gaussianity for the correlation of a bipartite quantum state by using various measures such as relative entropy and geometric distances. We first show that an intuitive approach, i.e., subtracting the correlation of a
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing con
We experimentally generate and tomographically characterize a mixed, genuinely non-Gaussian bipartite continuous-variable entangled state. By testing entanglement in 2$times$2-dimensional two-qubit subspaces, entangled qubits are localized within the