ترغب بنشر مسار تعليمي؟ اضغط هنا

The relationship between the magnetic interaction and photoinduced dynamics in antiferromagnetic perovskites is investigated in this study. In La${}_{1/3}$Sr${}_{2/3}$FeO${}_{3}$ thin films, commensurate spin ordering is accompanied by charge disprop ortionation, whereas SrFeO${}_{3}$ thin films show incommensurate helical antiferromagnetic spin ordering due to increased ferromagnetic coupling compared to La${}_{1/3}$Sr${}_{2/3}$FeO${}_{3}$. To understand the photoinduced spin dynamics in these materials, we investigate the spin ordering through time-resolved resonant soft X-ray scattering. In La${}_{1/3}$Sr${}_{2/3}$FeO${}_{3}$, ultrafast quenching of the magnetic ordering within 130 fs through a nonthermal process is observed, triggered by charge transfer between the Fe atoms. We compare this to the photoinduced dynamics of the helical magnetic ordering of SrFeO${}_{3}$. We find that the change in the magnetic coupling through optically induced charge transfer can offer an even more efficient channel for spin-order manipulation.
Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choi ce for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout.
We demonstrate the in-line holography for soft x-ray vortex beam having an orbital angular momentum. A hologram is recorded as an interference between a Bragg diffraction wave from a fork grating and a divergence wave generated by a Fresnel zone plat e. The obtained images exhibit fork-shaped interference fringes, which confirms the formation of the vortex beam. By analyzing the interference image, we successfully obtained the spiral phase distribution. The results demonstrate that the in-line holography technique is promising for the characterization of topological magnets, such as magnetic skyrmions.
We examined the photo-induced dynamics of ferromagnetic Co/Pt thin films demonstrating perpendicular magnetic anisotropy with element specificity using resonant polar magneto-optical Kerr effect measurements at Pt~N${}_{6,7}$ and Co~M${}_{2,3}$ edges with an x-ray free electron laser. The obtained results showed a clear element dependence of photo-induced demagnetization time scales: $tau_textrm{demag.}^textrm{Co}=80pm60~textrm{fs}$ and $tau_textrm{demag.}^textrm{Pt}=640pm140~textrm{fs}$. This dependence is explained by the induced moment of the Pt atom by current flow from the Co layer through the interfaces. The observed magnetization dynamics of Co and Pt can be attributed to the characteristics of photo-induced Co/Pt thin film phenomena including all-optical switching.
Detuning the signal-recycling cavity length from a cavity resonance significantly improves the quantum noise beyond the standard quantum limit, while there is no km-scale gravitational-wave detector successfully implemented the technique. The detunin g technique is known to introduce great excess noise, and such noise can be reduced by a laser modulation system with two Mach-Zehnder interferometers in series. This modulation system, termed Mach-Zehnder Modulator (MZM), also makes the control of the gravitational-wave detector more robust by introducing the third modulation field which is non-resonant in any part of the main interferometer. On the other hand, mirror displacements of the Mach-Zehnder interferometers arise a new kind of noise source coupled to the gravitational-wave signal port. In this paper, the displacement noise requirement of the MZM is derived, and also results of our proof-of-principle experiment is reported.
We demonstrate ultrafast magnetization dynamics in a 5d transition metal using circularly-polarized x-ray free electron laser in the hard x-ray region. A decay time of light-induced demagnetization of L1${}_0$-FePt was determined to be $tau_textrm{Pt } = 0.6 textrm{ps}$ using time-resolved x-ray magnetic circular dichroism at the Pt L${}_3$ edge, whereas magneto-optical Kerr measurements indicated the decay time for total magnetization as $tau_textrm{total} = 0.1 textrm{ps}$. A transient magnetic state with the photo-modulated magnetic coupling between the 3d and 5d elements is firstly demonstrated.
Experiments of time-resolved x-ray magnetic circular dichroism (Tr-XMCD) and resonant x-ray scattering at a beamline BL07LSU in SPring-8 with a time-resolution of under 50 ps are presented. A micro-channel plate is utilized for the Tr-XMCD measuremen ts at nearly normal incidence both in the partial electron and total fluorescence yield (PEY and TFY) modes at the L2,3 absorption edges of the 3d transition-metals in the soft x-ray region. The ultrafast photo-induced demagnetization within 50 ps is observed on the dynamics of a magnetic material of FePt thin film, having a distinct threshold of the photon density. The spectrum in the PEY mode is less-distorted both at the L2,3 edges compared with that in the TFY mode and has the potential to apply the sum rule analysis for XMCD spectra in pump-probed experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا