ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the scattering of a matter-wave from an interacting system of bosons in an optical lattice, focusing on the strong-interaction regime. Analytical expressions for the many-body scattering cross section are derived from a strong-coupling expan sion and a site-decoupling mean-field approximation, and compared to numerically obtained exact results. In the thermodynamic limit, we find a non-vanishing inelastic cross section throughout the Mott insulating regime, which decays quadratically as a function of the boson-boson interaction.
We study the scattering of matter-waves from interacting bosons in a one-dimensional optical lattice, described by the Bose-Hubbard Hamiltonian. We derive analytically a formula for the inelastic cross section as a function of the atomic interaction in the lattice, employing Bogoliubovs formalism for small condensate depletion. A linear decay of the inelastic cross section for weak interaction, independent of number of particles, condensate depletion and system size, is found.
Boson-Sampling holds the potential to experimentally falsify the Extended Church Turing thesis. The computational hardness of Boson-Sampling, however, complicates the certification that an experimental device yields correct results in the regime in w hich it outmatches classical computers. To certify a boson-sampler, one needs to verify quantum predictions and rule out models that yield these predictions without true many-boson interference. We show that a semiclassical model for many-boson propagation reproduces coarse-grained observables that were proposed as witnesses of Boson-Sampling. A test based on Fourier matrices is demonstrated to falsify physically plausible alternatives to coherent many-boson propagation.
We study quantum walks of many non-interacting particles on a beam splitter array, as a paradigmatic testing ground for the competition of single- and many-particle interference in a multi-mode system. We derive a general expression for multi-mode pa rticle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا