ترغب بنشر مسار تعليمي؟ اضغط هنا

The dispersive interaction of atoms and a far-detuned light field allows nondestructive imaging of the density oscillations in Bose-Einstein condensates. Starting from a ground state condensate, we investigate how the measurement back action leads to squeezing and entanglement of the quantized density oscillations. In particular, we show that properly timed, stroboscopic imaging and feedback can be used to selectively address specific eigenmodes and avoid excitation of non-targeted modes of the system.
We propose an efficient method to filter out single atoms from trapped ensembles with unknown number of atoms. The method employs stimulated adiabatic passage to reversibly transfer a single atom to the Rydberg state which blocks subsequent Rydberg e xcitation of all the other atoms within the ensemble. This triggers the excitation of Rydberg blockaded atoms to short lived intermediate states and their subsequent decay to untrapped states. Using an auxiliary microwave field to carefully engineer the dissipation, we obtain a nearly deterministic single-atom source. Our method is applicable to small atomic ensembles in individual microtraps and in lattice arrays.
We propose a scheme that employs dissipation to deterministically generate entanglement in an ensemble of strongly interacting Rydberg atoms. With a combination of microwave driving between different Rydberg levels and a resonant laser coupling to a short lived atomic state, the ensemble can be driven towards a dark steady state that entangles all atoms. The long-range resonant dipole-dipole interaction between different Rydberg states extends the entanglement beyond the van der Walls interaction range with perspectives for entangling large and distant ensembles.
We show that with adiabatic passage, one can reliably drive two-photon optical transitions between the ground states and interacting Rydberg states in a pair of atoms. For finite Rydberg interaction strengths a new adiabatic pathway towards the doubl y Rydberg excited state is identified when a constant detuning is applied with respect to an intermediate optically excited level. The Rydberg interaction among the excited atoms provides a phase that may be used to implement quantum gate operations on atomic ground state qubits.
Composite particles made of two fermions can be treated as ideal elementary bosons as long as the constituent fermions are sufficiently entangled. In that case, the Pauli principle acting on the parts does not jeopardise the bosonic behaviour of the whole. An indicator for bosonic quality is the composite boson normalisation ratio $chi_{N+1}/chi_{N}$ of a state of $N$ composites. This quantity is prohibitively complicated to compute exactly for realistic two-fermion wavefunctions and large composite numbers $N$. Here, we provide an efficient characterisation in terms of the purity $P$ and the largest eigenvalue $lambda_1$ of the reduced single-fermion state. We find the states that extremise $chi_N$ for given $P$ and $lambda_1$, and we provide easily evaluable, saturable upper and lower bounds for the normalisation ratio. Our results strengthen the relationship between the bosonic quality of a composite particle and the entanglement of its constituents.
Composite bosons made of two bosonic constituents exhibit deviations from ideal bosonic behavior due to their substructure. This deviation is reflected by the normalization ratio of the quantum state of N composites. We find a set of saturable, effic iently evaluable bounds for this indicator, which quantifies the bosonic behavior of composites via the entanglement of their constituents. We predict an abrupt transition between ordinary and exaggerated bosonic behavior in a condensate of two-boson composites.
We propose a scheme for rapid generation of high fidelity steady state entanglement between a pair of atoms. A two-photon excitation process towards long-lived Rydberg states with finite pairwise interaction, a dark state interference effect in the i ndividual atoms, and spontaneous emission from their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly dependent on the Rydberg interaction strength.
We present a fast scheme for arbitrary unitary control of interacting bosonic atoms in a double-well. Assuming fixed inter-well tunnelling rate and intra-well interaction strength, we control the many-atom state by a discrete sequence of shifts of th e single-well energies. For strong interactions, resonant tunnelling transitions implement beam-splitter U(2) rotations among atom number eigenstates, which can be combined and, thus, permit full controllability. By numerically optimizing such sequences of couplings at avoided level crossings (CALC), we extend the realm of full controllability to a wide range of realistic interaction parameters, while we remain in the simple control space. We demonstrate the efficiency and the high achievable fidelity of our proposal with non-adiabatic population transfer, N00N-state creation, a C-NOT gate, and a transistor-like, conditional evolution of several atoms.
We investigate the performance of Grovers quantum search algorithm on a register which is subject to loss of the particles that carry the qubit information. Under the assumption that the basic steps of the algorithm are applied correctly on the corre spondingly shrinking register, we show that the algorithm converges to mixed states with 50% overlap with the target state in the bit positions still present. As an alternative to error correction, we present a procedure that combines the outcome of different trials of the algorithm to determine the solution to the full search problem. The procedure may be relevant for experiments where the algorithm is adapted as the loss of particles is registered, and for experiments with Rydberg blockade interactions among neutral atoms, where monitoring of the atom losses is not even necessary.
We present an analysis of transfer of quantum information between the collective spin degrees of freedom of a large ensemble of two-level systems and a single central qubit. The coupling between the central qubit and the individual ensemble members m ay be varied and thus provides access to more than a single storage mode. Means to store and manipulate several independent qubits are derived for the case where the variation in coupling strengths does not allow addressing of orthogonal modes of the ensemble. While our procedures and analysis may apply to a number of different physical systems, for concreteness, we study the transfer of quantum states between a single electron spin and an ensemble of nuclear spins in a quantum dot.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا