ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the three-body Coulomb breakup of a two-neutron halo nucleus $^{11}$Li. We use the coupled-channel $^9$Li + $n$ + $n$ three-body model, which includes the coupling between last neutron states and the various $2p$-$2h$ configurations in $^9$Li due to the tensor and pairing correlations. The three-body scattering states of $^{11}$Li are described by using the combined methods of the complex scaling and the Lippmann-Schwinger equation. The calculated breakup cross section successfully reproduces the experiments. The large mixing of the s-state in the halo ground state of $^{11}$Li is shown to play an important role in explanation of shape and strength of the breakup cross section. In addition, we predict the invariant mass spectra for binary subsystems of $^{11}$Li. It is found that the two kinds of virtual s-states of $^9$Li-$n$ and $n$-$n$ systems in the final three-body states of $^{11}$Li largely contribute to make low-lying peaks in the invariant mass spectra. On the other hand, in the present analysis, it is suggested that the contributions of the p-wave resonances of $^{10}$Li is hardly confirmed in the spectra.
We study the resonance spectroscopy of the proton-rich nucleus 7B in the 4He+p+p+p cluster model. Many-body resonances are treated on the correct boundary condition as the Gamow states using the complex scaling method. We predict five resonances of 7 B and evaluate the spectroscopic factors of the 6Be-p components. The importance of the 6Be(2+)-p component is shown in several states of 7B, which is a common feature of 7He, a mirror nucleus of 7B. For only the ground state of 7B, the mixing of 6Be(2+) state is larger than that of 6He(2+) in 7He, which indicates the breaking of the mirror symmetry. This is caused by the small energy difference between 7B and the excited 6Be(2+) state, whose origin is the Coulomb repulsion.
We make a systematic study of Li isotopes (A=9,10,11) in the tensor optimized shell model for 9Li and treat the additional valence neutrons in the cluster model approach by taking into account the Pauli-blocking effect caused by the tensor and pairin g correlations. We describe the tensor correlations in 9Li fully in the tensor-optimized shell model, where the variation of the size parameters of the single particle orbits is essential for getting strong tensor correlations. We have shown in our previous study that in $^{10,11}$Li the tensor and pairing correlations in 9Li are Pauli-blocked by additional valence neutrons, which make the p-shell configurations pushed up in energy. As a result, the $s^2$ valence neutron component increases to reveal the halo structure of 11Li and the inversion phenomenon of the single particle spectrum in 10Li arises. Following the previous study, we demonstrate the reliability of our framework by performing a detailed systematic analysis of the structures of $^{9,10,11}$Li, such as the charge radius, the spatial correlation of halo neutrons of 11Li and the electromagnetic properties of Li isotopes. The detailed effects of the Pauli-blocking on the spectroscopic properties of $^{10,11}$Li are also discussed. It is found that the blocking acts strongly for the 11Li ground state rather than for 10Li and for the dipole excited states of 11Li, which is mainly caused by the interplay between the tensor correlation in 9Li and the halo neutrons. The results obtained in these analyses clearly show that the inert core assumption of 9Li is not realistic to explain the anomalous structures observed in $^{10,11}$Li. For the dipole excitation spectrum of 11Li, the effect of the final state interactions is discussed in terms of the dipole strength function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا