ترغب بنشر مسار تعليمي؟ اضغط هنا

Given an abelian variety over a number field, its Sato-Tate group is a compact Lie group which conjecturally controls the distribution of Euler factors of the L-function of the abelian variety. It was previously shown by Fite, Kedlaya, Rotger, and Su therland that there are 52 groups (up to conjugation) that occur as Sato-Tate groups of abelian surfaces over number fields; we show here that for abelian threefolds, there are 410 possible Sato-Tate groups, of which 33 are maximal with respect to inclusions of finite index. We enumerate candidate groups using the Hodge-theoretic construction of Sato-Tate groups, the classification of degree-3 finite linear groups by Blichfeldt, Dickson, and Miller, and a careful analysis of Shimuras theory of CM types that rules out 23 candidate groups; we cross-check this using extensive computations in Gap, SageMath, and Magma. To show that these 410 groups all occur, we exhibit explicit examples of abelian threefolds realizing each of the 33 maximal groups; we also compute moments of the corresponding distributions and numerically confirm that they are consistent with the statistics of the associated L-functions.
We classify all sets of nonzero vectors in $mathbb{R}^3$ such that the angle formed by each pair is a rational multiple of $pi$. The special case of four-element subsets lets us classify all tetrahedra whose dihedral angles are multiples of $pi$, sol ving a 1976 problem of Conway and Jones: there are $2$ one-parameter families and $59$ sporadic tetrahedra, all but three of which are related to either the icosidodecahedron or the $B_3$ root lattice. The proof requires the solution in roots of unity of a $W(D_6)$-symmetric polynomial equation with $105$ monomials (the previous record was $12$ monomials).
We prove that the cohomology groups of an etale Q_p-local system on a smooth proper rigid analytic space are finite-dimensional Q_p-vector spaces, provided that the base field is either a finite extension of Q_p or an algebraically closed nonarchimed ean field containing Q_p. This result manifests as a special case of a more general finiteness result for the higher direct images of a relative (phi, Gamma)-module along a smooth proper morphism of rigid analytic spaces over a mixed-characterstic nonarchimedean field.
In a previous paper, we constructed a category of (phi, Gamma)-modules associated to any adic space over Q_p with the property that the etale (phi, Gamma)-modules correspond to etale Q_p-local systems; these involve sheaves of period rings for Scholz es pro-etale topology. In this paper, we first extend Kiehls theory of coherent sheaves on rigid analytic spaces to a theory of pseudocoherent sheaves on adic spaces, then construct a corresponding theory of pseudocoherent (phi, Gamma)-modules. We then relate these objects to a more explicit construction in case the space comes equipped with a suitable infinite etale cover; in this case, one can decomplete the period sheaves and establish an analogue of the theorem of Cherbonnier-Colmez on the overconvergence of p-adic Galois representations. As an application, we show that relative (phi, Gamma)-modules in our sense coincide with the relative (phi, Gamma)-modules constructed by Andreatta and Brinon in the geometric setting where the latter can be constructed. As another application, we establish that the category of pseudocoherent (phi, Gamma)-modules on an arbitrary rigid analytic space over a p-adic field is abelian, satisfies the ascending chain condition, and is stable under various natural derived functors (including Hom, tensor product, and pullback). Applications to the etale cohomology of pro-etale local systems will be given in a subsequent paper.
We compute the complete set of candidates for the zeta function of a K3 surface over F_2 consistent with the Weil conjectures, as well as the complete set of zeta functions of smooth quartic surfaces over F_2. These sets differ substantially, but we do identify natural subsets which coincide. This gives some numerical evidence towards a Honda-Tate theorem for transcendental zeta functions of K3 surfaces; such a result would refine a recent theorem of Taelman, in which one must allow an uncontrolled base field extension.
We establish the group-theoretic classification of Sato-Tate groups of self-dual motives of weight 3 with rational coefficients and Hodge numbers h^{3,0} = h^{2,1} = h^{1,2} = h^{0,3} = 1. We then describe families of motives that realize some of the se Sato-Tate groups, and provide numerical evidence supporting equidistribution. One of these families arises in the middle cohomology of certain Calabi-Yau threefolds appearing in the Dwork quintic pencil; for motives in this family, our evidence suggests that the Sato-Tate group is always equal to the full unitary symplectic group USp(4).
We discuss the computation of coefficients of the L-series associated to a hyperelliptic curve over Q of genus at most 3, using point counting, generic group algorithms, and p-adic methods.
We analyze the distribution of unitarized L-polynomials Lp(T) (as p varies) obtained from a hyperelliptic curve of genus g <= 3 defined over Q. In the generic case, we find experimental agreement with a predicted correspondence (based on the Katz-Sar nak random matrix model) between the distributions of Lp(T) and of characteristic polynomials of random matrices in the compact Lie group USp(2g). We then formulate an analogue of the Sato-Tate conjecture for curves of genus 2, in which the generic distribution is augmented by 22 exceptional distributions, each corresponding to a compact subgroup of USp(4). In every case, we exhibit a curve closely matching the proposed distribution, and can find no curves unaccounted for by our classification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا