ترغب بنشر مسار تعليمي؟ اضغط هنا

391 - Kihwan Kim 2021
All learning algorithms for recommendations face inevitable and critical trade-off between exploiting partial knowledge of a users preferences for short-term satisfaction and exploring additional user preferences for long-term coverage. Although expl oration is indispensable for long success of a recommender system, the exploration has been considered as the risk to decrease user satisfaction. The reason for the risk is that items chosen for exploration frequently mismatch with the users interests. To mitigate this risk, recommender systems have mixed items chosen for exploration into a recommendation list, disguising the items as recommendations to elicit feedback on the items to discover the users additional tastes. This mix-in approach has been widely used in many recommenders, but there is rare research, evaluating the effectiveness of the mix-in approach or proposing a new approach for eliciting user feedback without deceiving users. In this work, we aim to propose a new approach for feedback elicitation without any deception and compare our approach to the conventional mix-in approach for evaluation. To this end, we designed a recommender interface that reveals which items are for exploration and conducted a within-subject study with 94 MTurk workers. Our results indicated that users left significantly more feedback on items chosen for exploration with our interface. Besides, users evaluated that our new interface is better than the conventional mix-in interface in terms of novelty, diversity, transparency, trust, and satisfaction. Finally, path analysis show that, in only our new interface, exploration caused to increase user-centric evaluation metrics. Our work paves the way for how to design an interface, which utilizes learning algorithm based on users feedback signals, giving better user experience and gathering more feedback data.
In this paper, we present a method of clothes retargeting; generating the potential poses and deformations of a given 3D clothing template model to fit onto a person in a single RGB image. The problem is fundamentally ill-posed as attaining the groun d truth data is impossible, i.e., images of people wearing the different 3D clothing template model at exact same pose. We address this challenge by utilizing large-scale synthetic data generated from physical simulation, allowing us to map 2D dense body pose to 3D clothing deformation. With the simulated data, we propose a semi-supervised learning framework that validates the physical plausibility of the 3D deformation by matching with the prescribed body-to-cloth contact points and clothing silhouette to fit onto the unlabeled real images. A new neural clothes retargeting network (CRNet) is designed to integrate the semi-supervised retargeting task in an end-to-end fashion. In our evaluation, we show that our method can predict the realistic 3D pose and deformation field needed for retargeting clothes models in real-world examples.
Stereo-based depth estimation is a cornerstone of computer vision, with state-of-the-art methods delivering accurate results in real time. For several applications such as autonomous navigation, however, it may be useful to trade accuracy for lower l atency. We present Bi3D, a method that estimates depth via a series of binary classifications. Rather than testing if objects are at a particular depth $D$, as existing stereo methods do, it classifies them as being closer or farther than $D$. This property offers a powerful mechanism to balance accuracy and latency. Given a strict time budget, Bi3D can detect objects closer than a given distance in as little as a few milliseconds, or estimate depth with arbitrarily coarse quantization, with complexity linear with the number of quantization levels. Bi3D can also use the allotted quantization levels to get continuous depth, but in a specific depth range. For standard stereo (i.e., continuous depth on the whole range), our method is close to or on par with state-of-the-art, finely tuned stereo methods.
This paper presents a new method to synthesize an image from arbitrary views and times given a collection of images of a dynamic scene. A key challenge for the novel view synthesis arises from dynamic scene reconstruction where epipolar geometry does not apply to the local motion of dynamic contents. To address this challenge, we propose to combine the depth from single view (DSV) and the depth from multi-view stereo (DMV), where DSV is complete, i.e., a depth is assigned to every pixel, yet view-variant in its scale, while DMV is view-invariant yet incomplete. Our insight is that although its scale and quality are inconsistent with other views, the depth estimation from a single view can be used to reason about the globally coherent geometry of dynamic contents. We cast this problem as learning to correct the scale of DSV, and to refine each depth with locally consistent motions between views to form a coherent depth estimation. We integrate these tasks into a depth fusion network in a self-supervised fashion. Given the fused depth maps, we synthesize a photorealistic virtual view in a specific location and time with our deep blending network that completes the scene and renders the virtual view. We evaluate our method of depth estimation and view synthesis on diverse real-world dynamic scenes and show the outstanding performance over existing methods.
We learn a self-supervised, single-view 3D reconstruction model that predicts the 3D mesh shape, texture and camera pose of a target object with a collection of 2D images and silhouettes. The proposed method does not necessitate 3D supervision, manua lly annotated keypoints, multi-view images of an object or a prior 3D template. The key insight of our work is that objects can be represented as a collection of deformable parts, and each part is semantically coherent across different instances of the same category (e.g., wings on birds and wheels on cars). Therefore, by leveraging self-supervisedly learned part segmentation of a large collection of category-specific images, we can effectively enforce semantic consistency between the reconstructed meshes and the original images. This significantly reduces ambiguities during joint prediction of shape and camera pose of an object, along with texture. To the best of our knowledge, we are the first to try and solve the single-view reconstruction problem without a category-specific template mesh or semantic keypoints. Thus our model can easily generalize to various object categories without such labels, e.g., horses, penguins, etc. Through a variety of experiments on several categories of deformable and rigid objects, we demonstrate that our unsupervised method performs comparably if not better than existing category-specific reconstruction methods learned with supervision.
Affordance modeling plays an important role in visual understanding. In this paper, we aim to predict affordances of 3D indoor scenes, specifically what human poses are afforded by a given indoor environment, such as sitting on a chair or standing on the floor. In order to predict valid affordances and learn possible 3D human poses in indoor scenes, we need to understand the semantic and geometric structure of a scene as well as its potential interactions with a human. To learn such a model, a large-scale dataset of 3D indoor affordances is required. In this work, we build a fully automatic 3D pose synthesizer that fuses semantic knowledge from a large number of 2D poses extracted from TV shows as well as 3D geometric knowledge from voxel representations of indoor scenes. With the data created by the synthesizer, we introduce a 3D pose generative model to predict semantically plausible and physically feasible human poses within a given scene (provided as a single RGB, RGB-D, or depth image). We demonstrate that our human affordance prediction method consistently outperforms existing state-of-the-art methods.
105 - Chao Liu , Jinwei Gu , Kihwan Kim 2019
Depth sensing is crucial for 3D reconstruction and scene understanding. Active depth sensors provide dense metric measurements, but often suffer from limitations such as restricted operating ranges, low spatial resolution, sensor interference, and hi gh power consumption. In this paper, we propose a deep learning (DL) method to estimate per-pixel depth and its uncertainty continuously from a monocular video stream, with the goal of effectively turning an RGB camera into an RGB-D camera. Unlike prior DL-based methods, we estimate a depth probability distribution for each pixel rather than a single depth value, leading to an estimate of a 3D depth probability volume for each input frame. These depth probability volumes are accumulated over time under a Bayesian filtering framework as more incoming frames are processed sequentially, which effectively reduces depth uncertainty and improves accuracy, robustness, and temporal stability. Compared to prior work, the proposed approach achieves more accurate and stable results, and generalizes better to new datasets. Experimental results also show the output of our approach can be directly fed into classical RGB-D based 3D scanning methods for 3D scene reconstruction.
Inverse rendering aims to estimate physical attributes of a scene, e.g., reflectance, geometry, and lighting, from image(s). Inverse rendering has been studied primarily for single objects or with methods that solve for only one of the scene attribut es. We propose the first learning-based approach that jointly estimates albedo, normals, and lighting of an indoor scene from a single image. Our key contribution is the Residual Appearance Renderer (RAR), which can be trained to synthesize complex appearance effects (e.g., inter-reflection, cast shadows, near-field illumination, and realistic shading), which would be neglected otherwise. This enables us to perform self-supervised learning on real data using a reconstruction loss, based on re-synthesizing the input image from the estimated components. We finetune with real data after pretraining with synthetic data. To this end, we use physically-based rendering to create a large-scale synthetic dataset, which is a significant improvement over prior datasets. Experimental results show that our approach outperforms state-of-the-art methods that estimate one or more scene attributes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا