ترغب بنشر مسار تعليمي؟ اضغط هنا

The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if t he effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.
We present an algorithm for a time-delayed feedback control design to stabilize periodic orbits with an odd number of positive Floquet exponents in autonomous systems. Due to the so-called odd number theorem such orbits have been considered as uncont rollable by time-delayed feedback methods. However, this theorem has been refuted by a counterexample and recently a corrected version of the theorem has been proved. In our algorithm, the control matrix is designed using a relationship between Floquet multipliers of the systems controlled by time-delayed and proportional feedback. The efficacy of the algorithm is demonstrated with the Lorenz and Chua systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا