ترغب بنشر مسار تعليمي؟ اضغط هنا

A 1D metallic surface state was created on an anisotropic InSb(001) surface covered with Bi. Angle-resolved photoelectron spectroscopy (ARPES) showed a 1D Fermi contour with almost no 2D distortion. Close to the Fermi level ($E_{rm F}$), the angle-in tegrated photoelectron spectra showed power-law scaling with the binding energy and temperature. The ARPES plot above $E_{rm F}$ obtained thanks to thermally broadened Fermi edge at room temperature showed a 1D state with continuous metallic dispersion across $E_{rm F}$ and power-law intensity suppression around $E_{rm F}$. These results strongly suggest a Tomonaga-Luttinger liquid on the Bi/InSb(001) surface.
The gem-stone dioptase Cu6Si6O18.6H2O has a chiral crystal structure of equilateral triangular helices consisting of Cu-3d spins. It shows an antiferromagnetic order with an easy axis along c at TN = 15.5 K under zero field, and a magnetization jump at HC = 13.5 T when the field is applied along c-axis. By 29Si-NMR measurements, we have revealed that the high-field state is essentially the two sub-lattice structure, and that the component within ab-plane is collinear. The result indicates no apparent match with the geometrical pattern of helical spin chain.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا