ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground state of the spin-1/2 chain of green dioptase at high fields

103   0   0.0 ( 0 )
 نشر من قبل Takayuki Goto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gem-stone dioptase Cu6Si6O18.6H2O has a chiral crystal structure of equilateral triangular helices consisting of Cu-3d spins. It shows an antiferromagnetic order with an easy axis along c at TN = 15.5 K under zero field, and a magnetization jump at HC = 13.5 T when the field is applied along c-axis. By 29Si-NMR measurements, we have revealed that the high-field state is essentially the two sub-lattice structure, and that the component within ab-plane is collinear. The result indicates no apparent match with the geometrical pattern of helical spin chain.

قيم البحث

اقرأ أيضاً

The high-field magnetic properties and magnetic order of the gem mineral green dioptase Cu$_6[$Si$_6$O$_{18}]cdot 6$H$_2$O have been studied by means of single-crystal neutron diffraction in magnetic fields up to $21~$T and magnetization measurements up to $30~$T. In zero field, the Cu$^{2+}$-moments in the antiferromagnetic chains are oriented along the $c$-axis with a small off-axis tilt. For a field applied parallel to the $c$-axis, the magnetization shows a spin-flop-like transition at $B^*=12.2~$T at $1.5~$K. Neutron diffraction experiments show a smooth behavior in the intensities of the magnetic reflections without any change in the periodicity of the magnetic structure. Bulk and microscopic observations are well described by a model of ferromagnetically coupled antiferromagnetic $XXZ$ spin-$frac{1}{2}$ chains, taking into account a change of the local easy-axis direction. We demonstrate that the magnetic structure evolves smoothly from a deformed Neel state at low fields to a deformed spin-flop state in a high field via a strong crossover around $B^*$. The results are generalized for different values of interchain coupling and spin anisotropy.
Frustrated spin-1/2 chains, despite the apparent simplicity, exhibit remarkably rich phase diagram comprising vector-chiral (VC), spin-density-wave (SDW) and multipolar/spin-nematic phases as a function of the magnetic field. Here we report a study o f $beta$-TeVO$_4$, an archetype of such compounds, based on magnetization and neutron diffraction measurements up to 25 T. We find the transition from the helical VC ground state to the SDW state at $sim$3 T for the magnetic field along the $a$ and $c$ crystal axes, and at $sim$9 T for the field along the $b$ axis. The high-field (HF) state, existing above $sim$18 T, i.e., above $sim$1/2 of the saturated magnetization, is an incommensurate magnetically ordered state and not the spin-nematic state, as theoretically predicted for the isotropic frustrated spin-1/2 chain. The HF state is likely driven by sizable interchain interactions and symmetric intrachain anisotropies uncovered in previous studies. Consequently, the potential existence of the spin nematic phase in $beta$-TeVO$_4$ is limited to a narrow field range, i.e., a few tenths of a tesla bellow the saturation of the magnetization, as also found in other frustrated spin-1/2 chain compounds.
We report a single-crystal study on the magnetism of the rare-earth compound PrTiNbO$_6$ that experimentally realizes the zigzag pseudospin-$frac{1}{2}$ quantum antiferromagnetic chain model. Random crystal electric field caused by the site mixing be tween non-magnetic Ti$^{4+}$ and Nb$^{5+}$, results in the non-Kramers ground state quasi-doublet of Pr$^{3+}$ with the effective pseudospin-$frac{1}{2}$ Ising moment. Despite the antiferromagnetic intersite coupling of about 4 K, no magnetic freezing is detected down to 0.1 K, whilst the system approaches its ground state with almost zero residual spin entropy. At low temperatures, a sizable gap of about 1 K is observed in zero field. We ascribe this gap to off-diagonal anisotropy terms in the pseudospin Hamiltonian, and argue that rare-earth oxides open an interesting venue for studying magnetism of quantum spin chains.
We present a model compound with a spin-1/2 frustrated square lattice, in which three ferromagnetic (F) interactions and one antiferromagnetic (AF) compet. Considering the effective spin-1 formed by the dominant F dimer, this square lattice can be ma pped to a spin-1 spatially anisotropic triangular lattice. The magnetization curve exhibits gapped behavior indicative of a dominant one-dimensional (1D) AF correlation. In the field-induced gapless phase, the specific heat and magnetic susceptibility show a phase transition to an ordered state with 2D characteristics. These results indicate that the spin-1 Haldane state is extended to the 2D system. We demonstrate that the gapped ground state observed in the present spin-1/2 frustrated square lattice originates from the one-dimensionalization caused by frustration.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success ful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا