ﻻ يوجد ملخص باللغة العربية
The gem-stone dioptase Cu6Si6O18.6H2O has a chiral crystal structure of equilateral triangular helices consisting of Cu-3d spins. It shows an antiferromagnetic order with an easy axis along c at TN = 15.5 K under zero field, and a magnetization jump at HC = 13.5 T when the field is applied along c-axis. By 29Si-NMR measurements, we have revealed that the high-field state is essentially the two sub-lattice structure, and that the component within ab-plane is collinear. The result indicates no apparent match with the geometrical pattern of helical spin chain.
The high-field magnetic properties and magnetic order of the gem mineral green dioptase Cu$_6[$Si$_6$O$_{18}]cdot 6$H$_2$O have been studied by means of single-crystal neutron diffraction in magnetic fields up to $21~$T and magnetization measurements
Frustrated spin-1/2 chains, despite the apparent simplicity, exhibit remarkably rich phase diagram comprising vector-chiral (VC), spin-density-wave (SDW) and multipolar/spin-nematic phases as a function of the magnetic field. Here we report a study o
We report a single-crystal study on the magnetism of the rare-earth compound PrTiNbO$_6$ that experimentally realizes the zigzag pseudospin-$frac{1}{2}$ quantum antiferromagnetic chain model. Random crystal electric field caused by the site mixing be
We present a model compound with a spin-1/2 frustrated square lattice, in which three ferromagnetic (F) interactions and one antiferromagnetic (AF) compet. Considering the effective spin-1 formed by the dominant F dimer, this square lattice can be ma
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success