ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, in an ensemble of small spheres, we proposed a method that converts the force between two large spheres into the pressure on the large spheres surface element. Using it, the density distribution of the small spheres around the large sphere can be obtained experimentally. In a similar manner, in this letter, we propose a transform theory for surface force apparatus, which transforms the force acting on the cylinder into the density distribution of the small spheres on the cylindrical surface. The transform theory we derived is briefly explained in this letter.
68 - Ken-ichi Amano 2015
Recently, we proposed a method that converts the force between two-large colloids into the pressure on the surface element (FPSE conversion) in a system of a colloidal solution. Using it, the density distribution of the small colloids around the larg e colloid is calculated. In a similar manner, in this letter, we propose a transform theory for colloidal probe atomic force microscopy (colloidal probe AFM), which transforms the force acting on the colloidal probe into the density distribution of the small colloids on a flat surface. If measured condition is proper one, in our view, it is possible for the transform theory to be applied for liquid AFM and obtain the liquid structure. The transform theory we derived is briefly explained in this letter.
We suggest a transform theory for calculating a density distribution of small colloids around a large colloid from a force curve between the two-large colloids. The main idea (calculation process) is that the force curve between the two-large colloid s is converted into the pressure on the surface element of the large colloid. This conversion is different from the celebrated Derjaguin approximation. A numerical matrix calculation is performed in the conversion to calculate it more precisely. Subsequently, the pressure on the surface element is transformed into the density distribution of the small colloids around the large colloid by using a transform theory for surface force apparatus proposed by Amano. In this letter, the process of the transformation is explained and a prototype result of the transformation is shown.
We propose a transform theory for calculating a density profile of small colloids around a large colloid from a force curve between the two-large colloids. In the colloid solution, there are many small colloids and two or several large colloids. The force curve between the two-large colloids can be measured by laser tweezers. In this letter, the transform theory is derived in detail, where a superposition approximation of the radial distributions of the density profiles and rigid-body approximation are introduced. In our opinion, if the experimental condition is satisfied, the transform theory can be used not only for the laser tweezers, but also for surface force apparatus and colloid probe atomic force microscopy. Furthermore, the transform theory is to calculate a density profile of micelles around a large spherical surface.
63 - Ken-ichi Amano 2015
Surface analyses inside the nanopore, micropore, and a very narrow pipe are important topics for development of the chemical engineering. Here, we propose a measuring method which evaluates the surface coverage of the chemically modified pore surface and the corrosion rate of the inner surface of the narrow pipe, etc. The method uses Kelvins equation that expresses saturated vapor pressure of a liquid in the pore (pipe). The surface coverage and the corrosion rate are calculated by measuring saturated vapor pressure of the liquid in the pore and the pipe, respectively. In this letter, we explain the concept of the method briefly.
We propose a transform method from a force curve obtained by a surface force apparatus (SFA) to a density distribution of a liquid on a surface of the SFA probe. (We emphasize that the transform method is a theory for the experiment.) In the method, two-body potential between the SFA probe and the solvent sphere is modeled as the soft attractive potential with rigid wall. The model potential is more realistic compared with the rigid potential applied in our earlier work. The introduction of the model potential is the improved point of the present transform method. The transform method is derived based on the statistical mechanics of a simple liquid where the simple liquid is an ensemble of small spheres. To derive the transform method, Kirkwood superposition approximation is used. It is found that the transformation can be done by a sequential computation. It is considered that the solvation structure can be obtained more precisely by using the improved transform method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا