ﻻ يوجد ملخص باللغة العربية
We propose a transform theory for calculating a density profile of small colloids around a large colloid from a force curve between the two-large colloids. In the colloid solution, there are many small colloids and two or several large colloids. The force curve between the two-large colloids can be measured by laser tweezers. In this letter, the transform theory is derived in detail, where a superposition approximation of the radial distributions of the density profiles and rigid-body approximation are introduced. In our opinion, if the experimental condition is satisfied, the transform theory can be used not only for the laser tweezers, but also for surface force apparatus and colloid probe atomic force microscopy. Furthermore, the transform theory is to calculate a density profile of micelles around a large spherical surface.
We suggest a transform theory for calculating a density distribution of small colloids around a large colloid from a force curve between the two-large colloids. The main idea (calculation process) is that the force curve between the two-large colloid
Recently, we proposed a method that converts the force between two-large colloids into the pressure on the surface element (FPSE conversion) in a system of a colloidal solution. Using it, the density distribution of the small colloids around the larg
Recently, in an ensemble of small spheres, we proposed a method that converts the force between two large spheres into the pressure on the large spheres surface element. Using it, the density distribution of the small spheres around the large sphere
Surface force apparatus (SFA) and atomic force microscopy (AFM) can measure a force curve between a substrate and a probe in liquid. However, the force curve had not been transformed to the number density distribution of solvent molecules (colloidal
In the short letter, we explain an improved transform theory for colloidal-probe atomic force microscopy (CP-AFM). CP-AFM can measure a force curve between the colloidal probe and a wall surface in a colloidal dispersion. The transform theory can est