ترغب بنشر مسار تعليمي؟ اضغط هنا

We report here the highest resolution near-IR imaging to date of the HD 141569A disc taken as part of the NICI Science Campaign. We recover 4 main features in the NICI images of the HD 141569 disc discovered in previous HST imaging: 1) an inner ring / spiral feature. Once deprojected, this feature does not appear circular. 2) an outer ring which is considerably brighter on the western side compared to the eastern side, but looks fairly circular in the deprojected image. 3) an additional arc-like feature between the inner and outer ring only evident on the east side. In the deprojected image, this feature appears to complete the circle of the west side inner ring and 4) an evacuated cavity from 175 AU inwards. Compared to the previous HST imaging with relatively large coronagraphic inner working angles (IWA), the NICI coronagraph allows imaging down to an IWA of 0.3. Thus, the inner edge of the inner ring/spiral feature is well resolved and we do not find any additional disc structures within 175 AU. We note some additional asymmetries in this system. Specifically, while the outer ring structure looks circular in this deprojection, the inner bright ring looks rather elliptical. This suggests that a single deprojection angle is not appropriate for this system and that there may be an offset in inclination between the two ring / spiral features. We find an offset of 4+-2 AU between the inner ring and the star center, potentially pointing to unseen inner companions.
82 - Ken Rice 2015
Kepler-78b is one of a growing sample of planets similar, in composition and size, to the Earth. It was first detected with NASAs emph{Kepler} spacecraft and then characterised in more detail using radial velocity follow-up observations. Not only is its size very similar to that of the Earth ($1.2 R_oplus$), it also has a very similar density ($5.6$ g cm$^{-2}$). What makes this planet particularly interesting is that it orbits its host star every $8.5$ hours, giving it an orbital distance of only $0.0089$ au. What we investigate here is whether or not such a planet could have been perturbed into this orbit by an outer companion on an inclined orbit. In this scenario, the outer perturber causes the inner orbit to undergo Kozai-Lidov cycles which, if the periapse comes sufficiently close to the host star, can then lead to the planet being tidally circularised into a close orbit. We find that this process can indeed produce such very-close-in planets within the age of the host star ($sim 600 - 900$ Myr), but it is more likely to find such ultra-short-period planets around slightly older stars ($> 1$ Gyr). However, given the size of the Kepler sample and the likely binarity, our results suggest that Kepler-78b may indeed have been perturbed into its current orbit by an outer stellar companion. The likelihood of this happening, however, is low enough that other processes - such as planet-planet scattering - could also be responsible.
We present here observational evidence that the snowline plays a significant role in the formation and evolution of gas giant planets. When considering the population of observed exoplanets, we find a boundary in mass-semimajor axis space that sugges ts planets are preferentially found beyond the snowline prior to undergoing gap-opening inward migration and associated gas accretion. This is consistent with theoretical models suggesting that sudden changes in opacity -- as would occur at the snowline -- can influence core migration. Furthermore, population synthesis modelling suggests that this boundary implies that gas giant planets accrete ~ 70 % of the inward flowing gas, allowing ~ 30$ % through to the inner disc. This is qualitatively consistent with observations of transition discs suggesting the presence of inner holes, despite there being ongoing gas accretion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا