ترغب بنشر مسار تعليمي؟ اضغط هنا

We report observations of the bright M82 supernova 2014J serendipitously obtained with the Kilodegree Extremely Little Telescope (KELT). The SN was observed at high cadence for over 100 days, from pre-explosion, to early rise and peak times, through the secondary bump. The high cadence KELT data with high S/N is completely unique for SN 2014J and for any other SNIa, with the exception of the (yet) unpublished Kepler data. Here, we report determinations of the SN explosion time and peak time. We also report measures of the smoothness of the light curve on timescales of minutes/hours never before probed, and we use this to place limits on energy produced from short-lived isotopes or inhomogeneities in the explosion or the circumstellar medium. From the non-observation of significant perturbations of the light curves, we derive a 3sigma upper-limit corresponding to 8.7 x 10^36 erg/s for any such extra sources of luminosity at optical wavelengths.
Using high-resolution echelle spectra obtained with Magellan/MIKE, we present a chemical abundance analysis of both stars in the planet-hosting wide binary system HD20782 + HD20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters $lesssim 0.2,$ AU. We investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperatures ($T_{C}approx 40-1660,$ K). The two stars are found to have a mean element-to-element abundance difference of $0.04pm0.07,$ dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements ($T_{C} > 900,$ K) exhibit a positive correlation between abundance (relative to solar) and $T_{C}$, with similar slopes of $approx$ $1times10^{-4},$ dex K$^{-1}$. The measured positive correlations are not perfect; both stars exhibit a scatter of $approx$ $5times10^{-5},$ dex K$^{-1}$ about the mean trend, and certain elements (Na, Al, Sc) are similarly deviant in both stars. These findings are discussed in the context of models for giant planet migration that predict the accretion of H-depleted rocky material by the host star. We show that a simple simulation of a solar-type star accreting material with Earth-like composition predicts a positive---but imperfect---correlation between refractory elemental abundances and $T_{C}$. Our measured slopes for HD 20782/81 are consistent with what is predicted for the ingestion of 10--20 Earths by both stars.
We present high cadence (1-10 hr^-1) time-series photometry of the eruptive young variable star V1647 Orionis during its 2003-2004 and 2008-2009 outbursts. The 2003 light curve was obtained mid-outburst at the phase of steepest luminosity increase of the system, during which time the accretion rate of the system was presumably continuing to increase toward its maximum rate. The 2009 light curve was obtained after the system luminosity had plateaued, presumably when the rate of accretion had also plateaued. We detect a flicker noise signature in the power spectrum of the lightcurves, which may suggest that the stellar magnetosphere continued to interact with the accretion disk during each outburst event. Only the 2003 power spectrum, however, evinces a significant signal with a period of 0.13 d. While the 0.13 d period cannot be attributed to the stellar rotation period, we show that it may plausibly be due to short-lived radial oscillations of the star, possibly caused by the surge in the accretion rate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا