ﻻ يوجد ملخص باللغة العربية
We report observations of the bright M82 supernova 2014J serendipitously obtained with the Kilodegree Extremely Little Telescope (KELT). The SN was observed at high cadence for over 100 days, from pre-explosion, to early rise and peak times, through the secondary bump. The high cadence KELT data with high S/N is completely unique for SN 2014J and for any other SNIa, with the exception of the (yet) unpublished Kepler data. Here, we report determinations of the SN explosion time and peak time. We also report measures of the smoothness of the light curve on timescales of minutes/hours never before probed, and we use this to place limits on energy produced from short-lived isotopes or inhomogeneities in the explosion or the circumstellar medium. From the non-observation of significant perturbations of the light curves, we derive a 3sigma upper-limit corresponding to 8.7 x 10^36 erg/s for any such extra sources of luminosity at optical wavelengths.
We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and twenty-three NIR spectra were obtained from 10 days before ($-$10d) to 10 days after (+10d) the time of maximum $B$-band brightness. The rel
The Kilodegree Extremely Little Telescope (KELT) has been surveying more than $70%$ of the celestial sphere for nearly a decade. While the primary science goal of the survey is the discovery of transiting, large-radii planets around bright host stars
The KELT project was originally designed as a small-aperture, wide-field photometric survey that would be optimally sensitive to planets transiting bright (V~8-10) stars. This magnitude range corresponded to the gap between the faint magnitude limit
Optical polarimetry is an effective way of probing the environment of supernova for dust. We acquired linear HST ACS/WFC polarimetry in bands $F475W$, $F606W$, and $F775W$ of the supernova (SN) 2014J in M82 at six epochs from $sim$277 days to $sim$11
SN 2014J in M82 is the closest detected Type Ia supernova (SN Ia) in at least 28 years and perhaps in 410 years. Despite its small distance of 3.3 Mpc, SN 2014J is surprisingly faint, peaking at V = 10.6 mag, and assuming a typical SN Ia luminosity,