ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the fabrication and optical testing of a fine grating on a ZnS substrate to be used as a wideband infrared spectral disperser and for which the primary application is measurement of the composition of the atmospheres of transiting exoplane ts using space-borne infrared astronomical telescopes. A grating with a blaze angle of 2.1 deg. and pitch of 166.667 midron was constructed on a roughly flat 10 mm x 10 mm substrate with a maximum thickness of 1 mm. To obtain high accuracy, the sample was fabricated on a ZnS monocrystal using a high performance processing machine at Canon Inc. The surface roughness measured with a microscope interferometer was 2.6 nm rms. The shape of the fabricated grating edges was examined with a scanning electron microscope. The diffraction efficiency was evaluated by optical experiments at {lambda} = 633 nm, 980 nm, and 1550 nm, and compared with the efficiencies calculated using a Fourier Modal Method. The results showed that the differences between the diffraction efficiencies obtained from experiment and by calculation were between just 0.9 % and 2.4 %. We concluded that the quality of the fabricated ZnS grating was sufficiently high to provide excellent diffraction efficiency for use in the infrared wavelength region. We also present the design of a spectral disperser in CdTe for future more advanced performance.
The SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is a proposed mid-to-far infrared (4-200 um) astronomy mission, scheduled for launch in 2017. A single, 3.5m aperture telescope would provide superior image quality at 5-200 um, and its very cold (~5 K) instrumentation would provide superior sensitivity in the 25-200 um wavelength regimes. This would provide a breakthrough opportunity for studies of exoplanets, protoplanetary and debris disk, and small solar system bodies. This paper summarizes the potential scientific impacts for the proposed instrumentation.
We describe the flight performance of the cryogenic system of the infrared astronomical satellite AKARI, which was successfully launched on 2006 February 21 (UT). AKARI carries a 68.5 cm telescope together with two focal plane instruments, Infrared C ameras (IRC) and Far Infrared Surveyor (FIS), all of which are cooled down to cryogenic temperature to achieve superior sensitivity. The AKARI cryogenic system is a unique hybrid system, which consists of cryogen (liquid helium) and mechanical coolers (2-stage Stirling coolers). With the help of the mechanical coolers, 179 L (26.0 kg) of super-fluid liquid helium can keep the instruments cryogenically cooled for more than 500 days. The on-orbit performance of the AKARI cryogenics is consistent with the design and pre-flight test, and the boil-off gas flow rate is as small as 0.32 mg/s. We observed the increase of the major axis of the AKARI orbit, which can be explained by the thrust due to thermal pressure of vented helium gas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا