ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of Expolanets and Solar Systems with SPICA

123   0   0.0 ( 0 )
 نشر من قبل Michihiro Takami
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michihiro Takami




اسأل ChatGPT حول البحث

The SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is a proposed mid-to-far infrared (4-200 um) astronomy mission, scheduled for launch in 2017. A single, 3.5m aperture telescope would provide superior image quality at 5-200 um, and its very cold (~5 K) instrumentation would provide superior sensitivity in the 25-200 um wavelength regimes. This would provide a breakthrough opportunity for studies of exoplanets, protoplanetary and debris disk, and small solar system bodies. This paper summarizes the potential scientific impacts for the proposed instrumentation.



قيم البحث

اقرأ أيضاً

191 - I. Kamp , M. Honda , H. Nomura 2021
In this era of spatially resolved observations of planet forming disks with ALMA and large ground-based telescopes such as the VLT, Keck and Subaru, we still lack statistically relevant information on the quantity and composition of the material that is building the planets, such as the total disk gas mass, the ice content of dust, and the state of water in planetesimals. SPICA is an infrared space mission concept developed jointly by JAXA and ESA to address these questions. The key unique capabilities of SPICA that enable this research are (1) the wide spectral coverage 10-220 micron, (2) the high line detection sensitivity of (1-2) 10-19 W m-2 with R~2000-5000 in the far-IR (SAFARI) and 10-20 W m-2 with R~29000 in the mid-IR (SMI, spectrally resolving line profiles), (3) the high far-IR continuum sensitivity of 0.45 mJy (SAFARI), and (4) the observing efficiency for point source surveys. This paper details how mid- to far-IR infrared spectra will be unique in measuring the gas masses and water/ice content of disks and how these quantities evolve during the planet forming period. These observations will clarify the crucial transition when disks exhaust their primordial gas and further planet formation requires secondary gas produced from planetesimals. The high spectral resolution mid-IR is also unique for determining the location of the snowline dividing the rocky and icy mass reservoirs within the disk and how the divide evolves during the build-up of planetary systems. Infrared spectroscopy (mid- to far-IR) of key solid state bands is crucial for assessing whether extensive radial mixing, which is part of our Solar System history, is a general process occurring in most planetary systems and whether extrasolar planetesimals are similar to our Solar System comets/asteroids. ... (abbreviated)
Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies ($E$) and durations ($tau$): $tau propto E^{0.39}$ (Maehara et al. 2017 $EP& S$, 67, 59 ), similar to those of solar hard/soft X-ray flares: $tau propto E^{0.2-0.33}$. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out a statistical research on 50 solar WLFs observed with textit{SDO}/HMI and examined the correlation between the energies and durations. As a result, the $E$--$tau$ relation on solar WLFs ($tau propto E^{0.38}$) is quite similar to that on stellar superflares ($tau propto E^{0.39}$). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy. (1) In solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect. (2) The distribution can be understood by applying a scaling law ($tau propto E^{1/3}B^{-5/3}$) derived from the magnetic reconnection theory. In this case, the observed superflares are expected to have 2-4 times stronger magnetic field strength than solar flares.
399 - Joseph Lazio 2019
Planetary radars have obtained unique science measurements about solar system bodies and they have provided orbit determinations allowing spacecraft to be navigated throughout the solar system. Notable results have been on Venus, Earths twin, and sma ll bodies, which are the constituents of the Suns debris disk. Together, these results have served as ground truth from the solar system for studies of extrasolar planets. The Nations planetary radar infrastructure, indeed the worlds planetary radar infrastructure, is based on astronomical and deep space telecommunications infrastructure, namely the radar transmitters at the Arecibo Observatory and the Goldstone Solar System Radar, part of NASAs Deep Space Network, along with the Green Bank Telescope as a receiving element. This white paper summarizes the state of this infrastructure and potential technical developments that should be sustained in order to enable continued studies of solar system bodies for comparison and contrast with extrasolar planetary systems. Because the planetary radar observations leverage existing infrastructure largely developed for other purposes, only operations and maintenance funding is required, though modest investments could yield more reliable systems; in the case of the Green Bank Telescope, additional funding for operations is required.
Whether it is fluorescence emission from asteroids and moons, solar wind charge exchange from comets, exospheric escape from Mars, pion reactions on Venus, sprite lighting on Saturn, or the Io plasma torus in the Jovian magnetosphere, the Solar Syste m is surprisingly rich and diverse in X-ray emitting objects. The compositions of diverse planetary bodies are of fundamental interest to planetary science, providing clues to the formation and evolutionary history of the target bodies and the solar system as a whole. X-ray fluorescence (XRF) lines, triggered either by solar X-rays or energetic ions, are intrinsic to atomic energy levels and carry an unambiguous signature of the elemental composition of the emitting bodies. All remote-sensing XRF spectrometers used so far on planetary orbiters have been collimated instruments, with limited achievable spatial resolution, and many have used archaic X-ray detectors with poor energy resolution. Focusing X-ray optics provide true spectroscopic imaging and are used widely in astrophysics missions, but until now their mass and volume have been too large for resource-limited in-situ planetary missions. Recent advances in X-ray instrumentation such as the Micro-Pore Optics used on the BepiColombo X-ray instrument (Fraser et al., 2010), Miniature X-ray Optics (Hong et al., 2016) and highly radiation tolerant CMOS X-ray sensors (e.g., Kenter et al., 2012) enable compact, yet powerful, truly focusing X-ray Imaging Spectrometers. Such instruments will enable compositional measurements of planetary bodies with much better spatial resolution and thus open a large new discovery space in planetary science, greatly enhancing our understanding of the nature and origin of diverse planetary bodies. Here, we discuss many examples of the power of XRF to address key science questions across the solar system.
X-ray observatories contribute fundamental advances in Solar System studies by probing Sun-object interactions, developing planet and satellite surface composition maps, probing global magnetospheric dynamics, and tracking astrochemical reactions. De spite these crucial results, the technological limitations of current X-ray instruments hinder the overall scope and impact for broader scientific application of X-ray observations both now and in the coming decade. Implementation of modern advances in X-ray optics will provide improvements in effective area, spatial resolution, and spectral resolution for future instruments. These improvements will usher in a truly transformative era of Solar System science through the study of X-ray emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا