ترغب بنشر مسار تعليمي؟ اضغط هنا

249 - Lei Hou , Xue Pan , Kecheng Liu 2021
Social media and online navigation bring us enjoyable experience in accessing information, and simultaneously create information cocoons (ICs) in which we are unconsciously trapped with limited and biased information. We provide a formal definition o f IC in the scenario of online navigation. Subsequently, by analyzing real recommendation networks extracted from Science, PNAS and Amazon websites, and testing mainstream algorithms in disparate recommender systems, we demonstrate that similarity-based recommendation techniques result in ICs, which suppress the system navigability by hundreds of times. We further propose a flexible recommendation strategy that solves the IC-induced problem and improves retrieval accuracy in navigation, demonstrated by simulations on real data and online experiments on the largest video website in China.
Let 0<n^*< omega and f:X-> n^*+1 be a function where X subseteq omega backslash (n^*+1) is infinite. Consider the following set S_f= {x subset aleph_omega : |x| <= aleph_{n^*} & (for all n in X)cf(x cap alpha_n)= aleph_{f(n)}}. The question, first po sed by Baumgartner, is whether S_f is stationary in [alpha_omega]^{< aleph_{n^*+1}}. By a standard result, the above question can also be rephrased as certain transfer property. Namely, S_f is stationary iff for any structure A=< aleph_omega, ... > theres a B prec A such that |B|= aleph_{n^*} and for all n in X we have cf(B cap aleph_n)= aleph_{f(n)}. In this paper, we are going to prove a few results concerning the above question.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا