ترغب بنشر مسار تعليمي؟ اضغط هنا

Cofinalities of elementary substructures of structures on aleph_omega

167   0   0.0 ( 0 )
 نشر من قبل Shelah Office
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let 0<n^*< omega and f:X-> n^*+1 be a function where X subseteq omega backslash (n^*+1) is infinite. Consider the following set S_f= {x subset aleph_omega : |x| <= aleph_{n^*} & (for all n in X)cf(x cap alpha_n)= aleph_{f(n)}}. The question, first posed by Baumgartner, is whether S_f is stationary in [alpha_omega]^{< aleph_{n^*+1}}. By a standard result, the above question can also be rephrased as certain transfer property. Namely, S_f is stationary iff for any structure A=< aleph_omega, ... > theres a B prec A such that |B|= aleph_{n^*} and for all n in X we have cf(B cap aleph_n)= aleph_{f(n)}. In this paper, we are going to prove a few results concerning the above question.



قيم البحث

اقرأ أيضاً

117 - Monroe Eskew 2019
We discuss a system of strengthenings of $aleph_omega$ is Jonsson indexed by real numbers, and identify a strongest one. We give a proof of a theorem of Silver and show that there is a barrier to weakening its hypothesis.
In [FHK13], the authors considered the question whether model-existence of $L_{omega_1,omega}$-sentences is absolute for transitive models of ZFC, in the sense that if $V subseteq W$ are transitive models of ZFC with the same ordinals, $varphiin V$ a nd $Vmodels varphi text{ is an } L_{omega_1,omega}text{-sentence}$, then $V models varphi text{ has a model of size } aleph_alpha$ if and only if $W models varphi text{ has a model of size } aleph_alpha$. From [FHK13] we know that the answer is positive for $alpha=0,1$ and under the negation of CH, the answer is negative for all $alpha>1$. Under GCH, and assuming the consistency of a supercompact cardinal, the answer remains negative for each $alpha>1$, except the case when $alpha=omega$ which is an open question in [FHK13]. We answer the open question by providing a negative answer under GCH even for $alpha=omega$. Our examples are incomplete sentences. In fact, the same sentences can be used to prove a negative answer under GCH for all $alpha>1$ assuming the consistency of a Mahlo cardinal. Thus, the large cardinal assumption is relaxed from a supercompact in [FHK13] to a Mahlo cardinal. Finally, we consider the absoluteness question for the $aleph_alpha$-amalgamation property of $L_{omega_1,omega}$-sentences (under substructure). We prove that assuming GCH, $aleph_alpha$-amalgamation is non-absolute for $1<alpha<omega$. This answers a question from [SS]. The cases $alpha=1$ and $alpha$ infinite remain open. As a corollary we get that it is non-absolute that the amalgamation spectrum of an $L_{omega_1,omega}$-sentence is empty.
When classes of structures are not first-order definable, we might still try to find a nice description. There are two common ways for doing this. One is to expand the language, leading to notions of pseudo-elementary classes, and the other is to all ow infinite conjuncts and disjuncts. In this paper we examine the intersection. Namely, we address the question: Which classes of structures are both pseudo-elementary and $mathcal{L}_{omega_1 omega}$-elementary? We find that these are exactly the classes that can be defined by an infinitary formula that has no infinitary disjunctions.
We study the saturation properties of several classes of $C^*$-algebras. Saturation has been shown by Farah and Hart to unify the proofs of several properties of coronas of $sigma$-unital $C^*$-algebras; we extend their results by showing that some c oronas of non-$sigma$-unital $C^*$-algebras are countably degree-$1$ saturated. We then relate saturation of the abelian $C^*$-algebra $C(X)$, where $X$ is $0$-dimensional, to topological properties of $X$, particularly the saturation of $CL(X)$.
In several classes of countable structures it is known that every hyperarithmetic structure has a computable presentation up to bi-embeddability. In this article we investigate the complexity of embeddings between bi-embeddable structures in two such classes, the classes of linear orders and Boolean algebras. We show that if $mathcal L$ is a computable linear order of Hausdorff rank $n$, then for every bi-embeddable copy of it there is an embedding computable in $2n-1$ jumps from the atomic diagrams. We furthermore show that this is the best one can do: Let $mathcal L$ be a computable linear order of Hausdorff rank $ngeq 1$, then $mathbf 0^{(2n-2)}$ does not compute embeddings between it and all its computable bi-embeddable copies. We obtain that for Boolean algebras which are not superatomic, there is no hyperarithmetic degree computing embeddings between all its computable bi-embeddable copies. On the other hand, if a computable Boolean algebra is superatomic, then there is a least computable ordinal $alpha$ such that $mathbf 0^{(alpha)}$ computes embeddings between all its computable bi-embeddable copies. The main technique used in this proof is a new variation of Ash and Knights pairs of structures theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا