ترغب بنشر مسار تعليمي؟ اضغط هنا

In a holographic model, which was used to investigate the color superconducting phase of QCD, a dilute gas of instantons is introduced to study the nuclear matter. The free energy of the nuclear matter is computed as a function of the baryon chemical potential in the probe approximation. Then the equation of state is obtained at low temperature. Using the equation of state for the nuclear matter, the Tolman-Oppenheimer-Volkov equations for a cold compact star are solved. We find the mass-radius relation of the star, which is similar to the one for quark star. This result is understood from the stiffness and the large speed of sound of the instanton gas considered here.
We extend a bottom up holographic model, which has been used in studying the color superconductivity in QCD, to the imaginary chemical potential ($mu_I$) region, and the phase diagram is studied on the $mu_I$-temperature (T) plane. The analysis is pe rformed for the case of the probe approximation and for the background where the back reaction from the flavor fermions are taken into account. For both cases, we could find the expected Roberge-Weiss (RW) transitions. In the case of the back-reacted solution, a bound of the color number $N_c$ is found to produce the RW periodicity. It is given as $N_cgeq 1.2$. Furthermore, we could assure the validity of this extended model by comparing our result with the one of the lattice QCD near $mu_I=0$.
A holographic bottom-up model used in studying the superconducting system is applied to search for the color superconducting phase of supersymmetric Yang-Mills theory. We apply the probe analysis of this model to the supersymmetric Yang-Mills theory in both the confinement and deconfinement phases. In this analysis, we find the color superconductivity in both phases when the baryon chemical potential exceeds a certain critical value. This result implies that, above the critical chemical potential, a color non-singlet diquark operator, namely the Cooper pair, has its vacuum expectation value even in the confinement phase. In order to improve this peculiar situation, we proceed the analysis by taking account of the full back-reaction from the probe. As a result, the color superconducting phase, which is observed in the probe approximation, disappears in both the confinement and deconfinement phases when parameters of the theory are set within their reasonable values.
We study the time evolution of early universe which is developed by a cosmological constant $Lambda_4$ and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker (FRW) space-time. The renormalized vacuum expectation value of energy- momentum tensor of the SYM theory is obtained in a holographic way. It includes a radiation of the SYM field, parametrized as $C$. The evolution is controlled by this radiation $C$ and the cosmological constant $Lambda_4$. For positive $Lambda_4$, an inflationary solution is obtained at late time. When $C$ is added, the quantum mechanical situation at early time is fairly changed. Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt equation and (ii) Lorentzian path-integral with the Picard-Lefschetz method by introducing an effective action. The results of two methods are compared.
We study the time development of strongly coupled ${cal N}=4$ supersymmetric Yang Mills (SYM) theory on cosmological Friedmann-Robertson-Walker (FRW) backgrounds via the AdS/CFT correspondence. We implement the cosmological background as a boundary m etric fulfilling the Friedmann equation with a four-dimensional cosmological constant and a dark radiation term. We analyze the dual bulk solution of the type IIB supergravity and find that the time-dependence of the FRW background strongly influences the dynamical properties of the SYM theory. We in particular find a phase transition between a confined and a deconfined phase. We also argue that some cosmological solutions could be related to the inflationary scenario.
We study the instability, for the supersymmetric Yang-Mills (SYM) theories, caused by the external electric field through the imaginary part of the action of the D7 probe brane, which is embedded in the background of type IIB theory. This instability is related to the Schwinger effect, namely to the quark pair production due to the external electric field, for the $SU(N_c)$ SYM theories. In this holographic approach, it is possible to calculate the Schwinger effect for various phases of the theories. Here we give the calculation for ${cal N}=2$ SYM theory and the analysis is extended to the finite temperature deconfinement and the zero temperature confinement phases of the Yang-Mills (YM) theory. By comparing the obtained production rates with the one of the supersymmetric case, the dynamical quark mass is estimated and we find how it varies with the chiral condensate. Based on this analysis, we give a speculation on the extension of the Nambu-Jona-Lasinio model to the finite temperature YM theory, and four fermi coupling is evaluated in the confinement theory.
We study the holographic supersymmetric Yang-Mills (SYM) theory, which is living in a hyperbolic space, in terms of the entanglement entropy. The theory contains a parameter ($C$) corresponding to the excitation of the SYM theory, and it controls the dynamical properties of the theory. The entanglement temperature ($T_{ent}$) is obtained by imposing the thermodynamic law for the relative entanglement entropy and the energy density of the excitation. This temperature is available at any value of the parameter $C$ even in the region where the Hawking temperature disappears. With this new temperature, the dynamical properties of the excited SYM theory are examined in terms of the thermodynamic law. We could find the signatures of phase transitions of the theory.
We study a holographic gauge theory living in the AdS$_4$ space-time at finite temperature. The gravity dual is obtained as a solution of the type IIB superstring theory with two free parameters, which correspond to four dimensional (4D) cosmological constant ($lambda$) and the dark radiation ($C$) respectively. The theory studied here is in confining and chiral symmetry broken phase for $lambda <0$ and small $C$. When $C$ is increased, the transition to the deconfinement phase has been observed at a finite value of $C/|lambda|$. It is shown here that the chiral symmetry is still broken for a finite range of $C/|lambda|$ in the deconfinement phase. In other words, the chiral phase transition occurs at a larger value of $C/|lambda|$ than the one of the deconfinement transition. So there is a parameter range of a new deconfinement phase with broken chiral symmetry. In order to study the properties of this phase, we performed a holographic analysis for the meson mass-spectrum and other quantities in terms of the probe D7 brane. The results of this analysis are compared with a linear sigma model. Furthermore, the entanglement entropy is examined to search for a sign of the chiral phase trantion. Several comments are given for these analyses.
We study glueballs in the holographic gauge theories living in a curved space-time. The dual bulk is obtained as a solution of the type IIB superstring theory with two parameters, which correspond to four dimensional (4D) cosmological constant $lambd a$ and the dark radiation $C$ respectively. The theory is in the confining phase for $lambda <0$ and small $C$, then we observe stable glueball states in this theory. However, the stability of the glueball states is lost when the density of the dark radiation ($C$) increases and exceeds a critical point. Above this point, the dark radiation works as the heat bath of the Yang-Mills theory since the event horizon appears. Thus the system is thermalized, and the theory is in a finite temperature deconfinement phase, namely in the QGP phase. We observe this transition process through the glueball spectra which varies dramatically with $C$. We also examined the entanglement entropy of the system to find a clue of this phase transition and the role of the dark radiation $C$ in the entanglement entropy.
We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8/$overline{rm D8}$ branes. In our model, we could obtain the equation of state (EOS) of our nuclear matter by introducing fermi momentum. Then, here we apply this model to the neutron star and study its mass and radius by solving the Tolman-Oppenheimer-Volkoff (TOV) equations in terms of the EOS given here. We give some comments for our holographic model from a viewpoint of the other field theoretical approaches.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا