ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-resistivity metal-semiconductor (M-S) contact is one of the urgent challenges in the research of 2D transition metal dichalcogenides (TMDs). Here, we report a chloride molecular doping technique which greatly reduces the contact resistance (Rc) i n the few-layer WS2 and MoS2. After doping, the Rc of WS2 and MoS2 have been decreased to 0.7 kohm*um and 0.5 kohm*um, respectively. The significant reduction of the Rc is attributed to the achieved high electron doping density thus significant reduction of Schottky barrier width. As a proof-ofconcept, high-performance few-layer WS2 field-effect transistors (FETs) are demonstrated, exhibiting a high drain current of 380 uA/um, an on/off ratio of 4*106, and a peak field-effect mobility of 60 cm2/V*s. This doping technique provides a highly viable route to diminish the Rc in TMDs, paving the way for high-performance 2D nano-electronic devices.
In this paper, we report a novel chemical doping technique to reduce the contact resistance (Rc) of transition metal dichalcogenides (TMDs) - eliminating two major roadblocks (namely, doping and high Rc) towards demonstration of high-performance TMDs field-effect transistors (FETs). By using 1,2 dichloroethane (DCE) as the doping reagent, we demonstrate an active n-type doping density > 2*1019 cm-3 in a few-layer MoS2 film. This enabled us to reduce the Rc value to a record low number of 0.5 kohm*um, which is ~10x lower than the control sample without doping. The corresponding specific contact resistivity (pc) is found to decrease by two orders of magnitude. With such low Rc, we demonstrate 100 nm channel length (Lch) MoS2 FET with a drain current (Ids) of 460 uA/um at Vds = 1.6 V, which is twice the best value reported so far on MoS2 FETs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا