ترغب بنشر مسار تعليمي؟ اضغط هنا

A Li-rich red giant star (2M19411367+4003382) recently discovered in the direction of NGC 6819 belongs to the rare subset of Li-rich stars that have not yet evolved to the luminosity bump, an evolutionary stage where models predict Li can be replenis hed. The currently favored model to explain Li enhancement in first-ascent red giants like 2M19411367+4003382 requires deep mixing into the stellar interior. Testing this model requires a measurement of 12C/13C, which is possible to obtain from APOGEE spectra. However, the Li-rich star also has abnormal asteroseismic properties that call into question its membership in the cluster, even though its radial velocity and location on color-magnitude diagrams are consistent with membership. To address these puzzles, we have measured a wide array of abundances in the Li-rich star and three comparison stars using spectra taken as part of the APOGEE survey to determine the degree of stellar mixing, address the question of membership, and measure the surface gravity. We confirm that the Li-rich star is a red giant with the same overall chemistry as the other cluster giants. However, its log g is significantly lower, consistent with the asteroseismology results and suggestive of a very low mass if the star is indeed a cluster member. Regardless of the cluster membership, the 12C/13C and C/N ratios of the Li-rich star are consistent with standard first dredge-up, indicating that Li dilution has already occurred, and inconsistent with internal Li enrichment scenarios that require deep mixing.
The open cluster NGC 6791 is among the oldest, most massive and metal-rich open clusters in the Galaxy. High-resolution $H$-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) of 11 red giants in NGC 6791 are analyze d for their chemical abundances of iron, oxygen, and sodium. The abundances of these three elements are found to be homogeneous (with abundance dispersions at the level of $sim$ 0.05 - 0.07 dex) in these cluster red giants, which span much of the red-giant branch (T$_{rm eff}$ $sim$ 3500K - 4600K), and include two red-clump giants. From the infrared spectra, this cluster is confirmed to be among the most metal-rich clusters in the Galaxy ($<$[Fe/H]$>$ = 0.34 $pm$ 0.06), and is found to have a roughly solar value of [O/Fe] and slightly enhanced [Na/Fe]. Non-LTE calculations for the studied Na I lines in the APOGEE spectral region ($lambda$16373.86AA and $lambda$16388.85AA) indicate only small departures from LTE ($leq$ 0.04 dex) for the parameter range and metallicity of the studied stars. The previously reported double population of cluster members with different Na abundances is not found among the studied sample.
131 - Johanna K. Teske 2014
The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanet atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] 6300 {AA} line and NLTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously-measured exoplanet host star C/O ratios may have been overestimated. The mean transiting exoplanet host star C/O ratio from this sample is 0.54 (C/O$_{solar}$=0.54), versus previously-measured C/O$_{host~star}$ means of $sim$0.65-0.75. We also observe the increase in C/O with [Fe/H] expected for all stars based on Galactic chemical evolution; a linear fit to our results falls slightly below that of other exoplanet host stars studies but has a similar slope. Though the C/O ratios of even the most-observed exoplanets are still uncertain, the more precise abundance analysis possible right now for their host stars can help constrain these planets formation environments and current compositions.
Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III (SDSS-III), is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2,403 giant stars in twelve fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity([Fe/H]$le-1.7$), including two that are very metal-poor [Fe/H]$sim-2.1$ by bulge standards. Luminosity-based distance estimates place the five stars within the outer bulge, where other 1,246 of the analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the $alpha$-elements O, Mg, and Si without significant $alpha$-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly-identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.
We present results of high resolution (~ 55000) spectral observations of 830 photometrically pre-selected candidate red giants in the magnitude range of V = 9-12. We develop a pipeline for automated determination of the stellar atmospheric parameters from these spectra and estimate T_eff, logg, [Fe/H], microturbulence velocity, and projected rotational velocities, vsini, for the stars. The analysis confirms that the candidate selection procedure yielded red giants with very high success rate. We show that most of these stars are G and K giants with slightly subsolar metallicity ([Fe/H] ~ -0.3 dex) An analysis of Mg abundances in the sample results in consistency of the [Mg/Fe] vs [Fe/H] trend with published results.
We present manganese abundances in 10 red-giant members of the globular cluster Omega Centauri; 8 stars are from the most metal-poor population (RGB MP and RGB MInt1) while two targets are members of the more metal rich groups (RGB MInt2 and MInt3). This is the first time Mn abundances have been studied in this peculiar stellar system. The LTE values of [Mn/Fe] in Omega Cen overlap those of Milky Way stars in the metal poor Omega Cen populations ([Fe/H] ~ -1.5 to -1.8), however unlike what is observed in Milky Way halo and disk stars, [Mn/Fe] declines in the two more metal-rich RGB MInt2 and MInt3 targets. Non-LTE calculations were carried out in order to derive corrections to the LTE Mn abundances. The non-LTE results for Omega Cen in comparison with the non-LTE [Mn/Fe] versus [Fe/H] trend obtained for the Milky Way confirm and strengthen the conclusion that the manganese behavior in Omega Cen is distinct. These results suggest that low-metallicity supernovae (with metallicities < -2) of either Type II or Type Ia dominated the enrichment of the more metal-rich stars in Omega Cen. The dominance of low-metallicity stars in the chemical evolution of Omega Cen has been noted previously in the s-process elements where enrichment from metal-poor AGB stars is indicated. In addition, copper, which also has metallicity dependent yields, exhibits lower values of [Cu/Fe] in the RGB MInt2 and MInt3 Omega Cen populations.
69 - Katia Cunha 2010
When compared to lithium and beryllium, the absence of boron lines in the optical results in a relatively small data set of boron abundances measured in Galactic stars to date. In this paper we discuss boron abundances published in the literature and focus on the evolution of boron in the Galaxy as measured from pristine boron abundances in cool stars as well as early-type stars in the Galactic disk. The trend of B with Fe obtained from cool F-G dwarfs in the disk is found to have a slope of 0.87 +/- 0.08 (in a log-log plot). This slope is similar to the slope of B with Fe found for the metal poor halo stars and there seems to be a smooth connection between the halo and disk in the chemical evolution of boron. The disk trend of boron with oxygen has a steeper slope of ~1.5. This slope suggests an intermediate behavior between primary and secondary production of boron with respect to oxygen. The slope derived for oxygen is consistent with the slope obtained for Fe provided that [O/Fe] increases as [Fe/H] decreases, as observed in the disk.
113 - Simone Daflon 2009
Sulfur abundances are derived for a sample of ten B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, SII and SIII. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S)=7.15+/-0.05. This average abundance result is in agreement with the recommended solar value (both from modelling of the photospheres in 1-D and 3-D, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ~4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037+/-0.012 dex/kpc.
84 - Katia Cunha 2007
We present chemical abundances in a sample of luminous cool stars located within 30 pc of the Galactic Center. Abundances of carbon, nitrogen, oxygen, calcium, and iron were derived from high-resolution infrared spectra in the H- and K-bands. The abu ndance results indicate that both [O/Fe] and [Ca/Fe] are enhanced respectively by averages of +0.2 and +0.3 dex, relative to either the Sun or the Milky Way disk at near solar Fe abundances. The Galactic Center stars show a nearly uniform and nearly solar iron abundance. The mean value of A(Fe) = 7.59 +- 0.06 agrees well with previous work. The total range in Fe abundance among Galactic Center stars, 0.16 dex, is significantly narrower than the iron abundance distributions found in the literature for the older bulge population. Our snapshot of the current-day Fe abundance within 30 pc of the Galactic Center samples stars with an age less than 1 Gyr; a larger sample in time (or space) may find a wider spread in abundances.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا